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Abstract
The introduction of Deep Neural Networks (DNN) based acous-
tic models has become the new state of the art of speech recog-
nition systems. The main reason for this is their lower recogni-
tion error rates in comparison with the traditional GMM-based
systems. However, the problem of robustness in noisy environ-
ments still exits. Deep Residual networks (ResNet), a special
type of DNNs, are popular in computer vision due to their in-
creasing number of convolutional layers and ease of optimiza-
tion, achieving a better performance in almost all the standard
image recognition datasets. In this paper, a Deep Residual Net-
work architecture is proposed, allowing ResNets to be used in
speech recognition tasks where the network input is small in
comparison with the image dimensions for which they were ini-
tially designed. Although the proposed model improves robust-
ness against noisy conditions itself we also introduce a mod-
ification of the well-known Power Normalized Cepstral Coef-
ficients (PNCC) as input to the ResNet with the aim of creat-
ing a noise invariant representation of the acoustic space. Ex-
periments show that deep residual learning in conjunction with
these features provides substantial improvements in recognition
accuracy in both, mismatched and matched conditions, in com-
parison to a conventional baseline in the Aurora-4 dataset.
Index Terms: noise robustness, deep neural networks, residual
networks, speech recognition, deep learning, features.

1. Introduction
In spite of the recent achievements of Automatic Speech Recog-
nition (ASR) systems, their performance is still worse than that
of humans in noisy or reverberant environments. The important
leap in performance that ASR has experienced in last years is
mostly due to the introduction of new acoustic models based
on Deep Neural Networks (DNNs) ([1], [2], [3]). Neverthe-
less, they still suffer from important deterioration in noisy en-
vironments and when unseen data is present in the test set, i.e.
mismatch conditions. A broad range of techniques have been
proposed aimed at solving this problem, but the performance is
still far from that of high Signal-to-Noise Ratio (SNR) scenarios
[4].

The problem of mismatch training can be addressed fol-
lowing one of these two approaches: a) proposing novel neural
network structures and b) robust feature extraction.

With respect to the first issue, a very effective example of
novel neural network structures that generalize better on unseen
data are Convolutional Neural Networks (CNN) [5]. CNN are
simply neural networks where a convolution replaces the gen-
eral matrix multiplication (feed-forward) in at least one of the
layers. The convolution operation can be seen as a feature map
that uses a filter. This way, this layer processes the image (spec-
trogram or any other time-frequency representation in the case

of speech recognition) with filters whose parameters are learnt
through back-propagation and convex optimization. The main
advantages of CNN are: a) parameter sharing, allowing a small
number of parameters since the filters are shared throughout the
whole input image and b) preservation of the local correlations
of the spectrogram.

CNN have become the state of the art in computer vision
[6, 7, 8, 9] and also have been employed in speech recognition
[10, 11, 12, 13] including contributions to robust speech recog-
nition [14, 15]. It is worth noting that in [11] the application
of a very deep convolutional neural network to noise speech
recognition provides an important enhancement. In particular
the authors present various network architectures based on the
well known VGGNet [8], using small 3×3 convolutional filters
and 2 × 2 pooling layers in a network with a high number of
layers: in particular, they employ 10 convolutional layers and
4 fully connected layers, obtaining high recognition scores in
multi-condition training (the mismatch training problem is not
addressed).

Recently in the computer vision community, Residual Net-
works (ResNet) [9, 16] have been shown to improve the VG-
GNet baseline, by increasing the number of convolutional lay-
ers through the inclusion of shortcut connections. In this paper
we put forward that ResNets can improve speech recognition
rates in noisy conditions given that they are capable to more
effectively model the speech variability of data.

Regarding the second issue, robust feature extraction has
been traditionally employed to create invariant representations
of the speech signal most of the times inspired in the Hu-
man Auditory System (HAS). For example, the classical Mel-
Frequency Cepstral Coefficients (MFCC) [17] and Perceptual
Linear Processing (PLP) features [18], as well as Gammatone-
based Coefficients (GTC) [19] or the more recently proposed
Power-Normalized Cepstral Coefficients [20, 21]. Additionally,
well-known techniques for reducing the train-test mismatch can
also be applied like mean normalization and mean variance nor-
malization which improve the DNN performance. Of course,
training with noisy data is an effective approach but in some
situations where the test conditions are unknown it can be im-
practical.

Successful combinations of robust features and DNN back-
ends to address the mismatch problem have been proposed in
numerous works, as for example [22] where a review of differ-
ent feature extraction strategies is presented showing that man-
ually designed (as opposed to automatically learnt) feature ex-
traction is still relevant or [23] where a specific feature set is
tailored to a DNN architecture.

In this paper, we propose a modification of the Power-
Normalized Cepstral Coefficients [21] that takes into account
the masking properties [24] of the HAS and outputs a filter-



bank like representation, that allows us to increase the recog-
nition rates when used in conjunction to CNN and other DNN
architectures and in particular, ResNets.

The remainder of this paper is organized as follows: Section
2 introduces deep residual learning and our proposed architec-
ture that adapts the original computer vision ResNet to speech
recognition. Our modification of PNCCs is presented in Sec-
tions 3. Sections 4 and 5 contain, respectively, the experimental
results achieved in comparison with other state of the art tech-
niques and a discussion about them. Finally, we draw some
conclusions and further lines of research in Section 6.

2. Deep Residual Learning
Deep Residual learning addresses the problem of degradation
when the number of layers in a network is high. In a vanilla
network (standard backpropagation trained) the stacked layers
directly try to fit the underlying mapping. On the contrary, in
ResNets the layers goal is to fit a residual function. The result-
ing residual mapping is more amenable for optimization since it
is easier to push a residual to zero than to try to fit an underlying
mapping.

Being H(x) the mapping to be fit, where x denotes the in-
put of the first layer of the residual block, ResNets try to fit the
mapping: F (x) = H(x) − x, and therefore the original func-
tion becomes H(x) = F (x) + x. This can be implemented by
the addition of shortcut connections among the layers, as can
be observed in Figure 1. The shortcut connections perform an
identity mapping and the inputs are added to the output of the
stacked layers. All this architecture is differentiable and there-
fore can be trained with traditional backpropagation.

The original Deep ResNet of [9] aimed at solving computer
vision problems consists of several residual units (Figure 1)
stacked together, where each residual unit consists of two con-
volutional layers with 3×3 filter sizes, batch normalization [25]
applied after each convolutions and ReLU [26] activation func-
tions after the first convolution and after the shortcut connec-
tions addition operation. Combining residual connections and
batch normalization simplifies the training process since even
when the weight matrix has small parameters (a typical cause
of vanishing gradients) the addition of the input (to compute the
residual) produces a more stable gradient across the network.

Deep ResNets architecture is easy to implement: when a
layer output map has the same dimensions than the input, a sim-
ple addition is performed, however if the layer output map is
halved, the number of convolutional filters needs to be doubled.
Thus, to perform feature map halving convolutional layers with
a stride of 2 are applied instead of the more usual pooling layers.
The original ResNet is built by stacking residual units, with a fi-
nal global average pooling layer, a 1000 units fully-connected
layer and a final softmax output.

Our proposed architecture (Figure 2) adapts the original
ResNet to speech recognition by taking into account the lower
dimensions of the input in comparison with those of images.
The input dimension in our case is 17×64 since we depart from
a filter bank with 64 filters and a temporal context window of 17
frames. Thus, the ResNet is built by stacking as many residual
units as to reduce the temporal dimension to one and the stride
is applied every other unit. As in the original ResNet every time
the stride is performed, the layer feature maps are doubled. This
gives us a total of 6 residual units with 512 feature maps in the
final layer. A final average pooling is performed to obtain an
output size of 512 to finish with a fully connected layer of 1000
ReLU units and softmax output.

3 × 3
conv BN ReLU 3 × 3

conv BN

+ ReLU
xl xl+1

Figure 1: A typical residual unit. Bach Normalization (BN) and
ReLU activation function are applied after each convolution.

3. Robust Features in Deep Learning-Based
Speech Recognition

The Power-Normalized Cepstral Coefficients [21] (PNCC) are
based on the use of a power-law non-linearity that replaces the
traditional logarithmic non-linearity used in MFCC coefficients,
a noise-suppression algorithm based on asymmetric filtering
that removes background excitation, and a module that carries
out temporal masking.

In this paper, we use a modification of the previously pre-
sented PNCC technique, where the modeling of the masking
behavior of the HAS is used to enhance the robustness of the
feature extraction stage [24]. This modeling consists of a non-
linear filtering of the PNCC spectrum, applied simultaneously
on both the frequency and time domains, by processing it us-
ing mathematical morphology operations as if it were an image.
The structuring element used in the morphology operation is
designed to closely resembles the masking phenomena taking
place in the cochlea.

In order to use the PNCC in the CNN networks, the last
stage in which the Discrete Cosine Transform (DCT) is applied
on the log filter-bank energies is removed obtaining a filter-bank
like representation. This modification allows us to have a bigger
input dimension (in particular 40 or 64 filters are used). Note
that a high dimensional input representation is required in order
to increase the number of convolutional layers.

Another modification needed is to remove the power-law
non-linearity, as we have found that the traditional logarith-
mic operation performs better in conjunction with deep-learning
back-ends. This follows the line of [14, 15] where it has been
shown that the Mel filter bank log-energies (MelFB) perform
better than the traditional MFCC.

The PNCC-based features with the logarithmic non-
linearity and without DCT are denoted as Power Normalized
Filter Banks (PNFB), whereas these latter features with the in-
clusion of our modeling of the auditory masking based on Mor-
phology Filtering (MF) will be referred in the remaining part of
the paper as MF-PNFB.

4. Experiments
In this section we report on the effectiveness of ResNet and MF-
PNFB in robust ASR using the Aurora-4 corpus [27]. Aurora 4
[27] is a medium size vocabulary task based on the Wall Street
Journal (WSJ0) corpus.

The experiments were performed using the 16 kHz clean
and multi-condition training sets. Each training set consists of
7137 utterances from 83 speakers. The clean training set con-
tains only clean data recorded with a single microphone. On the
other hand, the multi-condition training uses different micro-
phones and additive artificial noise. In particular, it is corrupted
with six different noises (street traffic, train station, car, babble,
restaurant, airport) at SNRs of 10-20dB.

The evaluation set is derived from the WSJ0 5K test set cor-
rupted with the same noises and recorded with different types
of microphones, creating a total of 14 test sets with 330 utter-



ances each. Note that the types of noise are shared across multi-
condition training and test sets but the SNRs of the data are not.
The results presented in this paper are averaged across all the
14 tests sets. The clean and multi-condition development sets
were only used for validation of the neural networks training.

Traditional GMM-HMM systems are used as a baseline and
to obtain the alignments for training the neural networks using
the Kaldi Speech Recognition Toolkit [28]. All the proposed
deep learning architectures are built following a hybrid archi-
tecture where the neural networks are trained to classify the in-
put acoustic features into classes corresponding to the states of
HMMs, so that the state emission likelihoods usually computed
with GMM can be replaced by the likelihoods generated by the
DNN.

In summary, five acoustic modeling systems are evaluated:
a traditional triphone GMM-HMM, a fully connected DNN, a
state of the art CNN, a very deep CNN version and the proposed
ResNet. All the systems are trained in clean and multi-condition
scenarios with two different feature extraction methods: the tra-
ditional mel Filter Banks (MelFB) and the proposed modifica-
tion of the Power Normalized Filter Banks (MF-PNFB). In the
first four cases, the static acoustic parameters are composed of
40 filters, whereas in the ResNet case, the number of filters is
set to 64.

The triphone GMM-HMM baseline system is trained em-
ploying the MFCC or PNCC features (cepstral version), lineal
discriminant analysis (LDA) and Maximum Likelihood Linear
Transform (MLLT), using the Kaldi Aurora-4 recipe. The train-
ing recipe starts building a monophone system and then em-
ploys the alignments obtained in this first stage to train an initial
triphone system. A final triphone system with LDA and MLLT
is subsequently retrained using the alignments of the later tri-
phone system. The clean training data is used to obtain the
alignments in the mismatched case and the multi-condition data
is used to obtain the alignments in the matched case. The DNN,
CNN, ResNet models are trained using the alignments obtained
by the final triphone system and mean variance normalization is
applied to the input features for every system in a per utterance
basis.

The deep neural fully connected network baseline (DNN) is
composed of 5 hidden layers with 2028 units in each layer with
ReLU activations functions and batch normalization in each
layer. The input for this configuration consist of 40 MelFB or
MF-PNFB and the corresponding ∆ and ∆∆ parameters. In
this case, an 11 frame context window is used.

The convolutional neural networks architectures can be
seen in Figure 2. The classical CNN proposed in [29, 13] is
used as a CNN baseline consisting of two convolutional layers
with 256 feature maps each one, with 9×9 and 3×3 filter sizes,
with a pooling layer in-between, followed by 3 fully connected
layers with 2048 hidden units each. ReLU activation functions
and batch normalization are employed and he convolutions are
performed with overlapping pooling.

The input for this configuration is encoded as a 11×40×3
where 3 feature maps are used for the features corresponding to
the static, ∆ and ∆∆ parameters including an 11 frame tempo-
ral context window.

The very deep CNN is based on the vd6 proposed by [11],
where six 3 × 3 convolutional layers are staked together and
non-overlapping pooling is used in convolutional layers. After
the first two and four layers a 2 max-pooling operation is per-
formed only in the frequency domain. In addition to the convo-
lutional layers 3 fully connected ones are added. The vd6 only
use a 11× 40 feature map as the ∆ and ∆∆ are removed.
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9 × 9, conv, 256

/1, /3, Pool

3 × 4, conv, 256

fc 2048

fc 2048

fc 2048

softmax

11×40×1

1 × 3, conv, 64
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/1, /2, pool

3 × 3, conv, 128

3 × 3, conv, 128

/1, /2, pool
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softmax
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3 × 3 conv, 64
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Figure 2: Block diagrams of the three CNN architectures. The
input, convolution and pooling sizes are given in time × fre-
quency scale. In the ResNet architecture, the stride is denoted
as /2 and is applied in both dimensions.

The last configuration tested is the proposed ResNet archi-
tecture as described in Section 2. The input for this architecture
is expanded to 17×64 to increase the number of residual layers,
i.e. 64 MelFB or PNFB are used with a temporal context of 17
frames.

All the networks have a final softmax output layer whose
output size is the number of senones of the final GMM-HMM
system described above since we use a hybrid architecture.

The training pipeline used for the deep neural networks is
almost the same for all the architectures: an Adam optimizer
[30] with cross-entropy as a loss function with an initial learning
rate of 0.001, Xavier initialization [31] for all the layers, early
stopping with 3 retries of patience is used, where the learning
rate is halved if the validation error is greater than the previous
epoch. A maximum number of 20 epoch is allowed, no dropout
is used, a batch size of 128 utterances is employed for all the
networks except for ResNet where 64 is used due computational
limitations.

The neural networks are trained using Tensorflow [32]. The
connection between Kaldi and Tensorflow can be found on [33,
34]. Also the scripts used to train the networks can be found in
[35].

Table 1 shows the recognition results for each of the ASR
systems in terms of the Word Error Rate (WER) [ % ] averaged
over all test sets both in clean and multi-condition training and
comparing the two parameterizations considered, MelFB and
MF-PNFB.



Model MelFB MF-PNFB

Clean Training GMM-HMM 46.71 30.30
DNN 41.69 28.10
CNN 38.20 27.91
vd6 37.91 27.61

ResNet 36.22 23.32

Multicondition Training GMM-HMM 22.11 18.47
DNN 14.01 14.38
CNN 12.65 12.26
vd6 11.70 11.61

ResNet 10.33 10.11

Table 1: Recognition results in terms of WER [ % ] using the
Aurora 4 dataset, averaged over all test sets, for all the architec-
tures, and for the two types of features (MelFB and MF-PNFB).
Note that for the GMM baseline system, cepstral versions of the
features are employed.

5. Discussion
From the results shown in Table 1, three main conclusions can
be drawn.

First, we have analysed the influence of Residual Networks
(ResNet) on the ASR system performance. As can be observed,
when using the conventional MelFB features, the ResNet ar-
chitecture produces relative error reductions of 13.12% with re-
spect to the plain neural network (DNN), 5.18% with respect
to the convolutional network (CNN) and 4.46% with respect to
vd6 in clean training conditions. For the multi-condition train-
ing scenario and the same features, ResNet also attains the best
recognition rate, achieving relative error reductions of 26.27%,
18.34% and 11.71% with respect to, respectively, DNN, CNN
and vd6 systems. In all cases, these performance differences
are statistically significant. Similar observations can be made
when the proposed features MF-PNFB are used, in both, clean
and multi-condition training. These results suggest that the pro-
posed ResNet model, which was initially designed for com-
puter vision tasks, is also suitable for speech recognition due to
its remarkable generalization capabilities. In fact, ResNet out-
performs the other acoustic models considered (GMM-HMM,
DNN, CNN and vd6) in mismatched and matched conditions,
showing its robustness against noise.

Second, the comparison of MelFB and MF-PNFB was in-
vestigated for clean training. As expected, the MF-PNFB fea-
tures clearly outperforms the MelFB baseline for all the acous-
tic modelings considered. In particular, for the ResNet archi-
tecture the use of MF-PNFB with respect to MelFB obtains a
relative error reduction of 35.62%, which is statistically sig-
nificant. It is worth noting that the result obtained by MelFB
in combination to Resnet does not outperform the traditional
GMM-HMM with MF-PNCC features. This observation indi-
cates that the performance of ASR systems based on deep neu-
ral networks still suffer from important degradations when the
mismatch between train and test data is high. Of course, this
deterioration can be partially solved in some cases by the appli-
cation of dataset augmentation techniques if some priors over
the test data distribution are available. Nevertheless, when this
solution is not feasible, the use of robust acoustic features (in
particular, MF-PNFB) in deep neural networks architectures is
helpful for reducing the error rate of the ASR system when mis-
matches between train and test data occur.

Third, the comparison of MelFB and MF-PNFB was evalu-
ated for the multi-condition training scenario. Results show that

for deep neural networks ASR systems, the use of MF-PNFB
produces small gains with respect to the conventional MelFB.
For example, MF-PNFB achieves a relative error reduction of
2.13% with respect to MelFB for the ResNet architecture, al-
though this performance difference is not statistically signifi-
cant. A reason for this behaviour is that, in general, when the
train and test data distributions are similar, the deep architec-
tures can properly extract the more suitable features by them-
selves and, in consequence, the application of robust techniques
on the feature extraction stage does not help significantly. In
particular, in the Aurora-4 the multi-condition train set has the
same noises at different SNRs than the test set, this allows us to
conclude that the deep architectures can generalize under dif-
ferent signal noise scenarios when those particular noises are
shown in the training stage. Nevertheless, it is worth mention-
ing that MF-PNFB do not damage the recognition rates, sug-
gesting that its use is advisable to obtain a performance gain
whenever it is plausible that the test data changes drastically
from the train data as, for example, in real situations where
channel and noise may vary over time.

To conclude, our best system (ResNet + MF-PNFB) attains
a better relative error reduction than other state-of-the-art tech-
niques for both, matched and mismatched cases in the Aurora-4
database. In comparison, for instance, we obtain better recogni-
tion rates than the features based on Locally-Normalized Filter-
banks [23] in clean and multi-condition training, although the
DNN-based ASR system in [23] is trained with alignments from
the clean set in both scenarios. Also, our system outperforms
in a significant amount the very deep convolutional networks
(vd6 baseline) presented in [8] for both cases, clean and multi-
condition training.

6. Conclusions and Future Work
In this paper, Deep Residual Networks (ResNet) are employed
for robust speech recognition in a hybrid ASR system showing
a better performance than standard DNNs and state of the art
CNNs in both matched and mismatched conditions using the
Aurora-4 dataset. This behaviour is due to their well known
convergence properties and generalization capabilities that al-
low a better modeling of speech variability. The other main
contribution of this work is the use of robust input features in
combination to deep neural network architectures. In particu-
lar, a modification of the Power Normalized Cepstral Coeffi-
cients (PNCC) with a masking modeling based on morpholog-
ical filtering is proposed, achieving significant improvements
with respect the conventional features when the mismatch be-
tween train and test data is high. Further lines of research in-
clude the assessment of the ResNet-based ASR system in larger
datasets and its combination with recursive hidden units.
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