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Abstract. The introduction of Deep Neural Network (DNN) based
acoustic models has produced dramatic improvements in performance. In
particular, we have recently found that Deep Maxout Networks, a modifi-
cation of DNNs’ feed-forward architecture that uses a max-out activation
function, provides enhanced robustness to environmental noise. In this
paper we further investigate how these improvements are translated into
the different broad phonetic classes and how does it compare to classi-
cal Hidden Markov Models (HMM) based back-ends. Our experiments
demonstrate that performance is still tightly related to the particular
phonetic class being stops and affricates the least resilient but also that
relative improvements of both DNN variants are distributed unevenly
across those classes having the type of noise a significant influence on
the distribution. A combination of the different systems DNN and classi-
cal HMM is also proposed to validate our hypothesis that the traditional
GMM/HMM systems have a different type of error than the Deep Neural
Networks hybrid models.

Keywords: Noise robustness · Deep Neural Networks · Dropout · Deep
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1 Introduction

Machine performance in Automatic Speech Recognition (ASR) tasks is still far
away from that of humans, and noisy conditions only compound the problem.
The last years have witnessed an important leap in performance with the intro-
duction of new acoustic models based on Deep Neural Networks (DNNs) [3,9].
Nevertheless, the performance of these kind of ASR systems in noisy conditions
has not yet been fully assessed.

Deep Neural Networks can be applied both in the so-called tandem [17] and
hybrid [16] architectures. In the first case, DNNs can be trained to generate
bottleneck features which are fed to a conventional GMM-HMM back-end. In
the second, DNNs are employed for acoustic modeling by replacing the GMMs
into an HMM system. In this paper we adopt a DNNs hybrid configuration.

DNN-HMM hybrid systems combine several features that make them supe-
rior to previous Artificial Neural Network (ANN)-HMM hybrid systems [13]:
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(a) DNNs have a larger number of hidden layers leading to systems with many
more parameters than the later. As a result, these models are less influenced
by the mismatch between training and testing data but can easily suffer from
overfitting if the training set is not big enough, (b) the network usually models
senones (tied states) directly (although there might be thousands of senones),
and (c) long context windows are used. Although conventional ANNs also take
into account longer context windows than HMMs or are able to model senones,
the key to the success of the DNN-HMM is the combination of these components.
DNN-HMM systems with these properties are often named Context-Dependent
Deep Neural Network HMM (CD-DNN-HMM).

However, the most remarkable difference with traditional neural networks
is that a pre-training stage is needed to reduce the chance that the error
back-propagation algorithm employed for training falls into a poor local min-
imum. Besides, some recent methods have been proposed to avoid overfitting
and improve the accuracy of the networks, as for example, dropout [10] which
randomly omits hidden units in the training stage. Another related technique is
the so-called Deep Maxout Networks (DMNs) [7] that split the hidden units at
each layer into non-overlapping groups, each of them generating an activation
using a max pooling operation. This way, DMNs reduce the size of the parame-
ter space significantly making it very suited for ASR tasks where the training
sets and input and output dimensions are normally quite large. For this rea-
son, DMNs have been employed in low-resources speech recognition devices [15]
among others [21].

We hypothesized that DMNs could improve recognition rates in noisy condi-
tions given that they were capable to more effectively model speech variability
from limited data [2]. Still, the number of research works that evaluate perfor-
mance of DNNs in noisy conditions is small. Notably, [20] applies DNNs with
dropout on the Aurora 4 dataset with encouraging results. Up to our knowl-
edge, [2] is the first attempt of using Deep Maxout Networks in combination
with dropout strategies in a noisy speech recognition task showing a substantial
increment of the recognition accuracy over DNNs and other traditional HMM-
based techniques. In this paper, we improve the results of our previous work
and also present an error analysis in broad phonetic classes to try to gain some
insight into the behaviour of the different systems.

Thought an analysis of errors in broad phonetic classes for noisy speech recog-
nition has not been performed in depth with DNNs systems, similar studies have
been carried out in order to compare the performance of recognizers based on
other different techniques. In this context, it is worth mentioning the work in [4]
that claims that the error structure produced by traditional HMM, on the one
hand and Hidden Trajectory Model (HTM) on the other, is different. The aim
of this study is to determine whether the performance improvements achieved
by the HTM-based system is restricted to certain classes of phones or is spread
over the classes. In particular, the performance comparisons are made consid-
ering six broad phonetic classes: vowels, semivowels, nasals consonants, frica-
tive consonants, affricates consonants, and stop closures and silence segments.



An Analysis of DNN in Broad Phonetic Classes 89

The main conclusion was that the improvements are more significant in sono-
rants (vowels, semivowels, nasals), followed by stops, whereas no improvement
is observed in fricatives.

The remainder of this paper is organized as follows: Section 2 introduces deep
neural networks and the hybrid automatic speech recognition architecture, and
dropout and maxout methods. Our results and the analysis in broad phonetic
classes are presented Sects. 3 and 4, respectively. Section 5 contains the exper-
imental results achieved by the combination of different systems, followed by
some conclusions and further lines of research in Sect. 6.

2 Deep Neural Networks and Hybrid Speech Recognition
Systems

A Deep Neural Network (DNN) is a Multi-Layer Perceptron (MLP) with a larger
number of hidden layers between its inputs and outputs, whose weights are fully
connected and are often initialized using an unsupervised pre-training scheme.

As a traditional MLP, the feed-forward architecture can be computed as
follows:

h(l+1) = σ
(
W(l)h(l) + b(l)

)
, 1 ≤ l ≤ L (1)

where h(l+1) is the vector of inputs to the l + 1 layer, σ(x) = (1 + e−x)−1 is the
sigmoid activation function, L is the total number of hidden layers, h(l) is the
output vector of the hidden layer l and W(l) and b(l) are the weight matrix and
bias vector of layer l, respectively.

Training a DNN using the well-known error back-propagation (BP) algorithm
with a random initialization of its weight matrices may not provide a good per-
formance as it may become stuck in a local minimum. To overcome this prob-
lem, DNN parameters are often initialized using an unsupervised technique as
Restricted Bolzmann Machines (RBMs) [8] or Stacked Denoising Autoencoders
(SDAs) [22].

2.1 Hybrid Speech Recognition Systems

In a hybrid DNN/HMM system, just as in classical ANN/HMM hybrids [1], a
DNN is trained to classify the input acoustic features into classes corresponding
to the states of HMMs, in such a way that the state emission likelihoods usually
computed with GMM are replaced by the likelihoods generated by the DNN.

The DNN estimates the posterior probability p(s|ot) of each state s given
the observation ot at time t, through a softmax final layer:

p(s|ot) =
exp

(
W(L)h(L) + b(L)

)
∑

S̄ exp
(
W(L)h(L) + b(L)

) . (2)

In a hybrid ASR system, the HMM topology is set from a previously trained
GMM-HMM, and the DNN training data come from the forced-alignment
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between the state-level transcripts and the corresponding speech signals obtained
by using this initial GMM-HMM system. In the recognition stage, the DNN esti-
mates the emission probability of each HMM state. To obtain the state emission
likelihoods p(ot|s), the Bayes rule is used, and the p(s|ot) estimated by the
DNN is scaled by the class prior, p(s), which can be estimated by counting the
occurrences of each state on the training data.

2.2 Dropout and Maxout Deep Neural Network

The most important problem to overcome in DNN training is overfitting. Nor-
mally this problem arises when we try to train a large DNN with a small training
set. A training method called dropout proposed in [10] tries to reduce overfitting
and improves the generalization capability of the network by randomly omitting
a certain percentage of the hidden units on each training iteration.

When dropout is employed, the activation function of Eq. (1) can be rewritten
as:

h(l+1) = m(l+1) � σ
(
W(l)h(l) + b(l)

)
, 1 ≤ l ≤ L (3)

where � denotes the element-wise product, m(l+1) is a binary vector of the same
dimension of h(l+1) whose elements are sampled from a Bernoulli distribution
with probability p. This probability is the so called Hidden Drop Factor (HDF )
and must be determined over a validation set as it will be seen in Sect. 3.

Dropout has already successfully tested on noise robust ASR in [20]. Its
benefits come from the improved generalization abilities attained by reducing
the DNNs expressivity. Another interpretation of the behaviour of dropout is
that in the training stage it adds random noise to the training set resulting in a
network that is very robust to variabilities in the inputs (in our particular case,
due to the addition of noise).

A Maxout Deep Neural Network (DMN) [7] is a modification of the feed-
forward architecture (Eq. (1)) where the maxout activation function is employed.
The maxout unit simply takes the maximum over a set of inputs. In a DMN each
hidden unit takes the maximum value over the g units of a group. The output
of the hidden node i of the layer l + 1 can be computed as follows:

h
(l+1)
i = max

j∈1,...,g
z
(l+1)
ij , 1 ≤ l ≤ L (4)

where z
(l+1)
ij are the linear pre-activation values from the l layer:

z(l+1) = W(l)h(l) + b(l) (5)

As can be observed the max-pooling operation is applied over the z(l+1) vector.
Note that DMNs fairly reduce the number of parameters over DNNs, as the
weight matrix W(l) of each layer in the DMN is 1/g of the size of its equivalent
DNN weight matrix. This makes DMN more convenient for ASR tasks where
the training sets and the input and output dimensions are normally very large.
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In [7] a demonstration of the capability of maxout units to approximate any
convex function by tuning the weights of the previous layers is included. For this
matter, the shapes of activation functions are not fixed allowing the DMNs to
model the variability of speech more smoothly. DMNs are commonly applied in
conjunction with dropout reducing overfitting and improving the model gener-
alization.

3 Experiments

Our experiments for evaluating and comparing the performance of conventional
GMM-HMM and the different hybrid deep neural networks-based ASR systems
on the TIMIT corpus [6] are presented below. In particular, we used the 462
speaker training set, a development set of 50 speakers to tune all the parameters
and finally the 24 speakers core test set. Each utterance is recorded at 16 kHz
and the corpus includes time-aligned phonetic transcriptions allowing as to give
results in terms of Phone Error Rate (PER).

To test the robustness of the different methods we added four different types
of noises (white, street, music and speaker) at four different SNRs using the
FANT tool [11] (with G.712 filtering) to the clean speech database. These noises
are the ones used in [12]. All the noisy tests are evaluated in mismatch conditions
(i.e. training with clean conditions and testing on noisy speech).

On the technical side we employed the Kaldi toolkit [19] for implementing the
traditional GMM-HMM ASR system and the PDNN toolkit [14] for the hybrid
DNN-based ASR systems.

In all the cases, the input features were 12th-order MFCCs plus a log-energy
coefficient, and their corresponding first and second order derivatives yielding
a 39 component feature vector. Mean and variance normalization on each of
the components was applied. A context of 5 frames was chosen for the hybrid
models. All the hybrid systems were trained with the labels generated from the
best performance GMM-HMM system through forced alignment.

First, we tuned the configuration parameters of the networks (number of
hidden layers, HDF, group size and momentum when applicable) under clean
conditions on the dev set. The way in which these parameters are tuned, the fine-
tuning of the momentum and the correct selection of the batch size are the main
differences with respect to the previous results published at [2]. HDF and group
size were validated on the development set considering 5 hidden layer networks,
yielding an optimal dropout factor of 0.1 for dropout DNNs, 0.2 for DMNs and
a group size of g = 3. These values of HDR and group size were used throughout
the rest of the experiments. DMNs are always employed in conjunction with
dropout. The number of hidden nodes in all of the DNNs is 1024. To be fair,
we chose 400 hidden maxout units for the DMN since 400 × 3 = 1200 yields a
number of parameters in the same order as the DNNs. After an exploration of
the learning rates, for the networks without dropout the learning rate started
at 0.08 for 30 epochs and was subsequently divided in half while the validation
error decreased. For the dropout and DMNs networks we started with a higher
learning rate of 0.1.
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Second, we compared the baseline GMM-HMM-based systems (Monophone,
Triphone, Triphone with Lineal Discriminant Analysis (LDA), Maximum Likeli-
hood Lineal Transform (MLLT) and Speaker Adaptive Training (SAT)) with the
best configuration of the different hybrid ASR systems under clean conditions.
Results for the test set of the TIMIT dataset are shown in Table 1. As can be
observed, the hybrid systems outperform the different versions of the baseline
systems, in both development and test sets. DNNs with random initialization and
pretraining achieve similar results but are outperformed by DNN with dropout
and DMN, being DMN the technique that obtains the lowest PER.

Table 1. Recognition results in terms of PER(%) for the TIMIT development and core
test sets in clean conditions.

Method Dev (PER %) Eval (PER %)

Mono 31.90 32.57

Triphone 24.70 26.68

Triphone LDA + MLLT + SAT 20.40 21.77

DNN random 19.80 21.25

DNN pretrain 19.17 20.69

DNN pretrain + dropout 18.49 19.46

DMN 17.73 18.54

Third, we tested the different systems in noisy conditions. Results achieved
by the monophone baseline, the best triphone baseline (LDA + MLLT+ SAT),
the hybrid DNN with pre-training and dropout and DMN-based ASR systems
in the noisy contaminated version of the TIMIT core test set are shown in Fig. 1
for the different types of noises and SNRs. Also Fig. 1 present results of different
systems combinations explained in Sect. 5.

As can be seen, DMN performs better in almost every situation for all the
noises in comparison to the other systems. It is specially remarkable the perfor-
mance of DMN in music and speaker noises. For white noise, results obtained
with DMN are very similar to those achieved by the DNN, but with a large
relative error reduction with respect to Triphone + MLLT.

4 Analysis in Broad Phonetic Classes

The most important reason of the high impact of the DNN change of learning
paradigm on ASR practitioners is its enhanced overall performance. However, it
is worth investigating whether these new systems could be fused with the others
to even obtain better robustness. For this to be true, the combined systems
should individually present different error behaviors and strengths.

Figure 2 presents the accuracies of the systems of Sect. 3 split into broad
phonetic classes as defined in [6] for an SNR of 15 dB. As can be observed, with
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Fig. 1. Comparison of the performance of the different systems in terms of PER [%]
for TIMIT test set in different noisy conditions.

(a) White Noise (b) Street Noise

(c) Music Noise (d) Speaker Noise

Fig. 2. Comparison of the performance in broad phonetic classes of the different sys-
tems in terms of PER [%] for TIMIT test set in different noisy conditions at 15 dB
SNR.
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very few exceptions, sorting the systems according to their performance within
these classes leads to the same results than for the overall figures of Table 1 and
Fig. 1.

In spite of the improvements of DNN and DMN based systems, performance
is still significantly dependent on the phonetic classes, being stops and affricates
the most difficult ones. In fact, it is on affricates where most of the aforemen-
tioned exceptions to the sorting of the systems according to their accuracies are
accumulated. We hypothesize that the reduced number of instances of affricates
in comparison with the rest causes this, somehow erratic, behaviour of the dif-
ferent systems in this class. This is not the case of stops, however, that match
the performance ordering of the systems with a sole exception on white noise
where DNNs are slightly better than DMNs.

For the four remaining phonetic classes, we can conclude that the improve-
ments due to DNN and DMN learning algorithms are translated to all of them
but not with the same intensity. The most benefited phonetic class is fricatives
since the relative loss of the best HMM-based system from the best DNN-based
(DMN) is the highest (13 % for white noise, 14 % for street, 19 % for music and
11 % for speaker). However, the type of noise is the most important factor that
determines which of the phonetic classes is better in absolute terms (vowels in
white noise, fricatives in street, nasals in music and semivowels in speaker).

5 System Combination

Given the results of the broad phonetic classes performed in Sect. 4, we hypoth-
esize that the combination of the different systems can improve the recognition
rates since the types of errors are different for each system.

We propose two combinations: (1) the DNN with dropout system plus the
DMN-based one; and (2) the DNN with dropout plus the DMN plus the triphone
with MLLT systems. The systems are fused by using the well-known Recognition
Output Voting Error Reduction (ROVER) [5] by Average Confidence Scores.
The results obtained can be seen in Fig. 1 where “Comb1” and “Comb2” refers
to the first and second combinations proposed, respectively.

On the one hand, results show that the combination of DNN with dropout
plus DMN provides better accuracies than DMN alone for all of the noises.
Although improvements are small in some cases, they are consistent with our
analysis where the performance is still significantly dependent on the phonetic
classes. On the other hand, results achieved by the second combination show
that the inclusion of the triphone-based ASR system improves the recognition
rates obtained by the first combination and any of the other systems, supporting
our hypothesis that the traditional GMM-HMM-based ASR systems produce
different types of errors than the Deep Neural Networks hybrid models.

6 Conclusions and Future Work

In this paper Deep Maxout Networks (DMNs) are employed for robust speech
recognition using a hybrid architecture showing a better performance over
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standard DNNs. This is due to the DMNs activation functions ability of model-
ing speech variability. An analysis of the errors that both HMM and DNN-based
systems produce on broad phonetic classes has been presented concluding that
differences in behaviours can be observed but that the type of noise is also
determinant. There are also important sources of error variability that have not
been explored in this paper, notably the feature extraction module. Finally, it
has been shown that the combination of GMM-HMM and DNN-based systems
improves the results in comparison to the individual ASR systems.

Further lines of research include testing the DMN in bigger datasets and
with other novel machine learning techniques like drop-connect [23] on the one
hand, and performing more detailed analysis of the confusion matrices using
data-driven techniques [18], on the other.
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