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Abstract—A perceptually motivated feature extraction method
based on mimicking the masking properties of the cochlea has
been recently found to provide enhanced performance when
applied to conventional speech recognition back-ends. On the
other hand, the introduction of Deep Neural Network (DNN)
based acoustic models has produced dramatic improvements
in performance. In particular, we found that Deep Maxout
Networks, a modification of DNNs’ feed-forward architecture that
uses a max-out activation function, provides enhanced robustness
to environmental noise. In this paper, we present preliminary
experiments on the combination of these two elements that
already show how the DMN-based back-end is capable of taking
advantage of these auditorily inspired features making the whole
system more robust and also suggesting that human-like repre-
sentations of speech keep playing an important role in DNN-based
automatic speech recognition systems.

I. INTRODUCTION

Machine performance in Automatic Speech Recognition
(ASR) tasks is still far away from that of humans, and
noisy conditions only compound the problem. Noise robust-
ness techniques can be divided into two approaches: feature
enhancement and model adaptation. Feature enhancement tries
to remove noise from the speech signal without changing the
acoustic model parameters while model adaptation changes
these parameters to fit the model to the noisy speech signal.

Our biologically inspired features [1] model the mask-
ing behavior of the HAS to enhance the robustness of the
feature extraction stage in ASR. Despite ingrained intuitions
that masking deteriorates signal quality, we propound that it
smooths away some noise and artifacts. The three cornerstones
of our procedure are first, the use of mathematical mor-
phology operations to emulate the masking processing of the
cochlea, second, the design of a single auditory-inspired three-
dimensional mask independent of frequency and intensity and
third, the use of an adequate underlying spectro-temporal rep-
resentation of speech such that the non-linearities in frequency
and intensity observed in the auditory masking phenomena
are significantly equalized granting a biologically meaningful
application of the two previously mentioned elements.

In particular, our model filters a spectro-temporal represen-
tation of speech—sometimes referred to as cochleogram—as if
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it were an image, allowing for the simultaneous processing of
both dimensions, time and frequency. The filtering procedure
we propose, based on mathematical morphology operations,
aims to reproduce the masking properties of the HAS. For
that purpose, the mask—or in mathematical morphology termi-
nology, the structuring element (SE)—reproduces the spectro-
temporal masking behavior as induced from well-known em-
pirical measurements that were either carried out in the spectral
or the temporal domains separately. Thus, the design of this
element is the crux of our approach. In [1], we present various
structuring element designs that aim at closely resembling the
auditory masking phenomena taking place in the cochlea.

Apart from these techniques, the last years have witnessed
an important leap in performance with the introduction of new
acoustic models based on Deep Neural Networks (DNNs) ([2],
[3D.

Deep Neural Networks (DNNs) can be applied both in the
so-called tandem [4] and hybrid [5] architectures. In the first
case, DNNs can be trained to generate bottleneck features
which are fed to a conventional GMM-HMM back-end. In
the second, DNNs are employed for acoustic modeling by
replacing the GMMs into an HMM system. In this paper we
adopt a DNNs hybrid configuration.

However, the most remarkable difference between tradi-
tional neural networks and DNN is that a pre-training stage is
needed to reduce the chance that the error back-propagation
algorithm employed for training falls into a poor local min-
imum. Besides, some recent methods have been proposed to
avoid overfitting and improve the accuracy of the networks,
as for example, dropout [6] which randomly omits hidden
units in the training stage. Another related technique is the so-
called Deep Maxout Networks (DMNs) [7] that split the hidden
units at each layer into non-overlapping groups, each of them
generating an activation using a max pooling operation. This
way, DMNs reduce the size of the parameter space significantly
making it very suited for ASR tasks where the training sets
and input and output dimensions are normally quite large.

In [8] we proved that DMNs improve recognition rates
in noisy conditions given that they were capable to more
effectively model speech variability from limited data. In this
paper we combine our biologically inspired features with
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the DMNs under various noisy conditions, aimed to improve
behavior in these scenarios. Achieved results show that feature
engineering also has an important role in the DNN-based
automatic speech recognition systems.

The remainder of this paper is organized as follows:
Section II reviews the biologically inspired features, Section III
introduces Deep Neural Networks, the hybrid automatic speech
recognition architecture, and dropout and maxout methods.
Finally Section IV presents the results obtained in the TIMIT
dataset followed by some conclusions and further lines of
research in Section V.

II. MORPHOLOGICALLY-FILTERED BIOLOGICALLY
INSPIRED FEATURES

A. An overview of morphological processing

Mathematical Morphology is a theory for the analysis of
spatial structures [9] whose main application domain is in
Image Processing as a tool for thinning, pruning, structure
enhancement, object marking, segmentation and noise filter-
ing [10]. It may be used on both binary and grey-scale images.

To perform Morphological Filtering (MF) operations, we
first convolve the image with a SE and then select the output
value depending on the thresholded result of the convolution.
In this paper, we apply MF on cochleograms, our underlying
spectro-temporal representation, that will be processed as if
they were images. This spectro-temporal representation is
explained on Section II-C.

With the proper choice of SE, morphological operations
on the cochleogram reproduce the phenomenon of auditory
masking where the most prominent or salient elements of the
cochleogram mask their surroundings in both the temporal and
frequency domain.

Erosion and dilation are the basic morphological opera-
tions. Erosion is used to reduce objects, while dilation produces
enlargement and fill in small holes. Let .S be the underlying
spectro-temporal representation and M the structuring ele-
ment, erosion is defined as: S © M and dilation: S @® M.

There are two possible operators generated by the combina-
tion of erosion and dilation using the same structuring element
for both operations: opening (S o M) and closing (S e M). The
first one is an erosion followed by a dilation and the second,
a dilation followed by an erosion. Mathematically it can be
expressed as:

SoM=(SeoM)eoM; SeM=(SoM)oM (1)

The opening operator tends to remove the outer tiny leaks
and round shapes, whereas the closing operator preserves the
regions that have a similar shape as the structuring element.
Previous experiments [11] show that closing performs better
for ASR than opening.

For producing the final filtered cochleogram S’, first the
closing operator is applied on the original (possibly de-noised)
spectro-temporal representation S using the structuring ele-
ment M and the result is subsequently added on S.

S'=S+SeM ©)
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Fig. 1: Visualizations of the structuring element.

From this enhanced cochleogram S’, the cepstral coefficients
are computed following the procedure explained in Section
II-C.

B. Modeling Cochlear Masking

In this section we explain the auditorily-motivated SE that
tries to emulate the complex phenomenon of cochlear masking.

The cochlea is the organ that converts the mechanical
vibrations in the middle ear to neural impulses. The basi-
lar membrane—the sensing structure that runs the length of
the cochlea—transforms the acoustical spectrum into a spatial
tonotopical map [12]. Cochlear masking is the phenomenon
whereby the perception of some frequency at a particular time
instant, the masked frequency is affected by the sound level
of another, the masker frequency—possibly at a different time
instant—to the extent that masked frequencies may disappear
from perception. The effect of a masker on simultaneously
masked frequencies is called simultaneous masking. The phe-
nomenon whereby a masker affects non-simultaneous frequen-
cies is called temporal masking.

Classical masking experiments concentrated in determining
the amount of masking in either of these directions—frequency
or time—in isolation. Such experiments, for instance, noticed
that simultaneous masking is better represented in a logarith-
mic scale where the spacing and the masker frequency slopes
extend more regularly to either side of the spectrum [13]. But
it is important to notice that a given (masked) frequency is
always being masked by maskers at different time instants—
both from earlier and later maskers—and frequencies—both
from lower and greater frequency maskers.

Masking is investigated using masking tones s(F,t) =
L., 6(F — F,,,t — T,;,) where F is in a transformed frequency
scale, L,, is the sound pressure level of the tone, F},, and T},
are the masker frequency and time instant, the slopes were
fitted for L,, = 60dB (see Figure 6.14 of [14]). We assume
a constant L, across all frequencies and intensities, relying
on the underlying spectro-temporal representation to accom-
modate the frequency-intensity dependency of the masking
properties.

The basic model for simultaneous masking consists of a
linear masker threshold, with slopes of +30dB per band for
lower band masking and —8dB per band for higher band
masking [14].

Temporal masking has methodologically been treated as
two separate processes: premasking occurs before the appear-
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Fig. 2: Choice spectrograms output by each step of the
architecture.

ance of the masker while postmasking manifests itself after
the masker is no longer present. It is generally agreed-upon
that premasking is noticeable about 20ms prior to the masker,
while the duration of postmasking extends well beyond 200 ms,
perhaps as far as 500 ms [11].

Premasking is usually modeled as a constant slope of
+25 dB/ms, starting 20 ms before the masker, and postmasking
with a fitted model for single masker-induced postmasking
which was presented in [15],

M (t — Ty, L) = a(bf log (t — Tm))(Lm — c) 3)

where M is the amount of masking, ¢ is measured in ms, L,,
is the masker level in dB SPL, and a, b and c are parameters
obtained by fitting the curve to the data.

After such models, a masking SE for a single frequency-
time point should be quite sharp. But findings point to a smooth
model around (F,,,T,,), with sublinear decays close to this
point and superlinear decays further away [14]. To explain
this, we hypothesize that at the level of granularity at which
the cochleogram is being observed the masking response of a
particular (F,,,T,,) must be the aggregation of many single-
point responses.

Our SE is piecewise-convex model built by aggregating
4 paraboloid quadrants of different parameters fitted to the
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Fig. 3: Structure of the proposed front-end algorithm; shaded
blocks, spectral subtraction (SS) and Morphological Filtering
(MF), indicates the major differences regarding the conven-
tional MFCC algorithm.

contour provided by the explained time and simultaneous
masking models. The shape of the proposed SE can be seen
in Figure 1.

Different sizes in both frequency and time scale were
tested in [1], and the best performance was obtained by
taking 10ms of premasking, 150ms of postmasking, and
6 bands in frequency. In all cases, the frequency resolution of
each band was 4 pixels. Temporal and simultaneous masking
were interpolated over these boundaries and a normalization
between zero and one was applied. Finally, the SE was padded
with zeros around the pixel in which the morphological closing
operation is to be performed. The SE can be seen at the upper
left of Figure 2(a) along with examples of the output of some
of the processing steps leading to the final cochleogram.

C. Spectro-temporal representation

In this section we explain our choice of the auditorily-
motivated frequency scaled spectrograms or cochleograms
used in the proposed front-end. The underlying spectro-
temporal representation is the domain where the previously
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explained MF filtering is applied. In this paper, we have
chosen the traditional MFCC spectro-temporal representa-
tion. Figure 3 represents the block diagram of the complete
proposed front-end based on Mel-frequency spectro-temporal
representations where the gray blocks are our additions to the
conventional MFCC feature extraction: MF and SS. What we
call a masked cochleogram, S’(f, t), is obtained by performing
morphological filtering on S(f,t) using the single structuring
element described in the previous section. As for the spectral
subtraction block, we found synergies with MF under the
MFCC framework in previous works [11], [16], [17] that
we also confirm in this paper for a deep architecture. The
last two blocks carry out the usual procedure, to de-correlate
the resulting filter-bank energies by means of the Discrete
Cosine Transform (DCT), followed by a Mean and Variance
Normalization (MVN).

III. DEEP NEURAL NETWORKS AND HYBRID SPEECH
RECOGNITION SYSTEMS

A Deep Neural Network (DNN) is a Multi-Layer Percep-
tron (MLP) with a larger number of hidden layers between its
inputs and outputs, whose weights are fully connected and are
often initialized using an unsupervised pre-training scheme.

As a traditional MLP, the feed-forward architecture can be
computed as follows:
ni+) — & (w<l>h<l> n b(l)> L 1<I<L @&
where h(+1) is the vector of inputs to the I+ 1-th layer, o (x) =
(1+¢*)"" is the sigmoid activation function, L is the total
number of hidden layers, h(") is the output vector of hidden
layer / and W) and b() are the weight matrix and bias vector
of layer [, respectively.

Training a DNN using the well-known error back-
propagation (BP) algorithm with a random initialization of its
weight matrices may not provide a good performance as it may
become stuck in a local minimum. To overcome this problem,
DNN parameters are often initialized using an unsupervised
technique, e.g. Restricted Bolzmann Machines (RBMs) [18]
or Stacked Denoising Autoencoders (SDAs) [19].

A. Hybrid Speech Recognition Systems

In a hybrid DNN/HMM system, just as in classical
ANN/HMM hybrid architectures [20], a DNN is trained to
classify the input acoustic features into classes corresponding
to the states of HMMs in such a way that the state emission
likelihoods usually computed with GMM are replaced by the
likelihoods generated by the DNN.

The DNN estimates the posterior probability p(s|o;) of
each state s given the observation o, at time ¢ through a
softmax final layer

exp (W(L)h(L) + b(L))

. 5
ZS exp (W(L)h(L) + b(L)) )

p(sloy) =

In a hybrid ASR system, the HMM topology is set from
a previously trained GMM-HMM, and the DNN training data
come from the forced-alignment between the state-level tran-
scripts and the corresponding speech signals obtained by using
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this initial GMM-HMM system. In the recognition stage, the
DNN estimates the emission probability of each HMM state.
Bayes’ rule is used to obtain the state emission likelihoods
p(os|s) and the p(s|o;) estimated by the DNN is scaled by
the class prior, p(s), which can be estimated by counting the
occurrences of each state on the training data.

B. Dropout

The most important problem to overcome in DNN training
is overfitting. This problem usually arises when we train a
large DNN with a small training set. A training method called
dropout proposed in [6] tries to reduce overfitting and improves
the generalization capability of the network by randomly
omitting a certain percentage of the hidden units on each
training iteration.

When dropout is employed, the activation function of (4)
can be rewritten as:

h+D) — ;O 4o (W<l>h<l> n b(”) , 1<I<L (6
where * denotes the Hadamard (entry-wise) product, and
m() is a binary vector conformal to h(") whose elements
are sampled from a Bernoulli distribution with probability p.
This probability is the so called Hidden Drop Factor (HDF)
and must be determined over a validation set as explained in
Section IV.

As the sigmoid function has the property that o(0) = 0,
Eq. (6) can be rewritten as:

ni+) — & (m(l) . (W(l)h(” n b“))) C1<I<L ()
where dropout is applied on the inputs of the activation
function, leading to a more efficient way of performing dropout

training. Note that dropout is only applied in the training stage
whereas during testing all the hidden units become active.

Dropout networks are trained with the standard stochastic
gradient descent algorithm but using the forward architecture
presented on Eq. (6) instead of Eq. (4). Following [21], during
testing we compensate the parameters to take into account the
dropout factor by scaling the weight matrices as follows:

O]

w" = (1-HDF)-WY 8)

Dropout has already successfully tested on noise robust
ASR in [22]. Its benefits come from the improved general-
ization abilities attained by reducing their capacity. Another
interpretation of the behaviour of dropout is that in the training
stage it adds random noise to the training set resulting in a
network that is very robust to variabilities in the inputs (in our
particular case, due to the addition of noise).

C. Maxout Deep Neural Network

A Maxout Deep Neural Network (DMN) [7] is a modi-
fication of the feed-forward architecture (Eq. (4)) where the
maxout activation function is employed. The maxout unit
simply takes the maximum over a set of inputs. In a DMN
each hidden unit takes the maximum value over the g units of
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a group. The output of the hidden node i of the layer [ + 1
can be computed as follows:

hl(-lﬂ) = max zl-(l-H), 1<I<L 9)
j€L g Y
where zg.ﬂ) are the linear pre-activation values from the [
layer:

2D — WORO £ pO (10

As can be observed the max-pooling operation is applied over
the z(*1) vector. Note that DMNs fairly reduce the number
of parameters over DNNs, as the weight matrix W) of
each layer in the DMN is 1/g of the size of its equivalent
DNN weight matrix. This makes DMN more convenient for
ASR tasks where the training sets and the input and output
dimensions are normally very large. An illustration of a DMN
with 2 hidden layers and a group size of g = 3 is shown in
Figure 4.

In [7] a demonstration of the capability of maxout units
to approximate any convex function by tuning the weights of
the previous layers is included. For this purpose, the shapes of
activation functions are not fixed, allowing the DMNs to model
the variability of speech more smoothly. DMNs are commonly
applied in conjunction with dropout to maximize the model
averaging effects of dropout

IV. EXPERIMENTS

Our experiments for evaluating and comparing the perfor-
mance of conventional GMM-HMM and the different hybrid
deep neural networks-based ASR systems with our biologically
inspired features on the TIMIT corpus [23] are presented
below. In particular, we used the 462 speaker training set, a
development set of 50 speakers to tune all the parameters and
finally the 24 speaker core test set. Each utterance is recorded
at 16 kHz and the corpus includes time-aligned phonetic
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transcriptions allowing us to give results in terms of Phone
Error Rate (PER).

To test the robustness of the different methods we added
four different types of noises (white, street, music and speaker)
at four different SNRs using the FANT tool [24] (with G.712
filtering) to the clean speech database. These noises are the
ones used in [25]. All the noisy tests are evaluated in mismatch
conditions (that is, training with clean conditions and testing
on noisy speech).

We used the Kaldi toolkit [26] for implementing the tra-
ditional GMM-HMM ASR system and the PDNN toolkit [27]
for the hybrid DNN-based ASR systems.

In all the cases, the input features were 12th-order modified
MFCCs plus a log-energy coefficient, and their corresponding
first and second order derivatives yielding a 39 component
feature vector. Mean and variance normalization on each of the
components was applied. A context of 5 frames was chosen for
the hybrid models. All the hybrid systems were trained with
the labels generated from the best performance GMM-HMM
system through forced alignment.

We chose as baseline the Deep Maxout Networks (DMNs)
in combination with dropout, since we prove in [8] that
DMNs perform better in almost every situation for all the
noises considered in comparison to other systems (Monophone,
Triphone, Triphone with Lineal Discriminant Analysis, Maxi-
mum Likelihood Linear Transform, and Speaker Adaptative
Training, traditional DNNs with and without pretrain and
DNNs with dropout).

The configuration parameters of the network (number of
hidden layers, HDF, group size and momentum when applica-
ble) are set up based on previous work [8] where: HDF is 0.2
and the group size g = 3. The number of hidden maxout units
for the DMN is 400.

Figure 5 shows the Phone Error Rate (PER) for each type of
noise and SNR, obtained by the baseline (MFCC), the baseline
with spectral subtraction (SS), and our features with spectral
subtraction (MF + SS) and without spectral subtraction (MF).

Figure 5 shows that: (1) the application of MF improves
the baseline recognition rates for all noises except for speaker
noise where all the results are very similar; (2) the SS
technique also improves the baseline in all cases; (3) the joint
use of SS and MF improves the recognition rates obtained
with SS and with the baseline, and; (4) the (MF+SS) method
achieves the best performance in almost every noise and SNR
conditions.

V. CONCLUSIONS AND FUTURE WORK

In this paper the combination of biologically motivated
features and Deep Maxout Networks (DMNs) is employed
for robust speech recognition into a hybrid DNN-HMM
ASR system, showing a better performance than conventional
MFCC and spectral subtraction on the same architecture. The
proposed features are designed taking into account the HAS
masking properties through the proper choice of the SE and the
application of morphology operations on the cochleograms.

Results show that the application of morphological pro-
cessing in conjunction with spectral subtraction produces a
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significant increase in recognition rates on a noisy version of
the Timit dataset. Also, it is proved that the DMN-based back-
end is capable of take advantage of these auditorily inspired
features making the whole system more robust, suggesting that
research in new acoustic representations of speech still has an
important role in the DNN-based automatic speech recognition
systems.

Future work will focus on two directions. Regarding the
feature extraction process, we plan to introduce the dependency
of the masker strength into the morphological procedure. With
respect to the back-end, further lines of research include testing
the DMN in bigger datasets and with other novel machine
learning techniques, like dropconnect [28].
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