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Abstract. Deep Neural Networks (DNN) have become very popular for
acoustic modeling due to the improvements found over traditional Gaus-
sian Mixture Models (GMM). However, not many works have addressed
the robustness of these systems under noisy conditions. Recently, the
machine learning community has proposed new methods to improve the
accuracy of DNNs by using techniques such as dropout and maxout. In
this paper, we investigate Deep Maxout Networks (DMN) for acoustic
modeling in a noisy automatic speech recognition environment. Experi-
ments show that DMNs improve substantially the recognition accuracy
over DNNs and other traditional techniques in both clean and noisy con-
ditions on the TIMIT dataset.

Keywords: noise robustness, deep neural networks, dropout, deep max-
out networks, speech recognition, deep learning.

1 Introduction

Machine performance in Automatic Speech Recognition (ASR) tasks is still far
away from that of humans, and noisy conditions only compound the problem.
Noise robustness techniques can be divided into two approaches: feature en-
hancement and model adaptation. Feature enhancement tries to remove noise
from the speech signal without changing the acoustic model parameters while
model adaptation changes these parameters to fit the model to the noisy speech
signal. Apart from these techniques, the last years have witnessed an impor-
tant leap in performance with the introduction of new acoustic models based
on Deep Neural Networks (DNNs) in comparison with conventional Gaussian
Mixture Model-Hidden Markov Model (GMM-HMM) ([7], [3]) ASR systems.
Nevertheless, the performance of these kind of ASR systems in noisy conditions
has not yet been fully assessed.

Deep Neural Networks can be applied both in the so-called tandem [16] and
hybrid [15] architectures. In the first case, DNNs can be trained to generate
bottleneck features which are fed to a conventional GMM-HMM back-end. In
the second, DNNs are employed for acoustic modeling by replacing the GMMs
into an HMM system. In this paper we adopt a DNNs hybrid configuration.
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DNN-HMM hybrid systems combine several features that make them supe-
rior to previous Artificial Neural Network (ANN)-HMM hybrid systems [11]: a)
DNNs have a larger number of hidden layers leading to systems with many more
parameters than the later. As a result, these models are less influenced by the
mismatch between training and testing data but can easily suffer from overfit-
ting if the training set is not big enough, b) the network usually models senones
(tied states) directly (although there might be thousands of senones), and c) long
context windows are used. Although conventional ANN also take into account
longer context window than HMM or are able to model senones, the key to the
success of the DNN-HMM is the combination of these components. DNN-HMM
systems with these properties are often named Context-Dependent Deep Neural
Network HMM (CD-DNN-HMM).

However, the most remarkable difference with traditional neural networks is
that a pre-training stage in needed to reduce the chance that the error back-
propagation algorithm employed for training falls into a poor local minimum.
Besides, some recent methods have been proposed to avoid overfitting and im-
prove the accuracy of the networks, as for example, dropout [8] which randomly
omits hidden units in the training stage. Another related technique is the so-
called Deep Maxout Networks (DMNs) [5] that splits the hidden units at each
layer into non-overlapping groups, each of them generating an activation using a
max pooling operation. This way, DMNs reduces the size of the parameter space
significantly making it very suited for ASR tasks where the training sets and
input and output dimensions are normally quite large. For this reason, DMNs
have been employed in low-resources speech recognition devices [14] boosting
the performance over other methods. We hypothesize that DMNs can improve
the recognition rates in noisy conditions given that they are capable to model
the speech variability from limited data more effectively [14].

As mentioned before, the number of research works that test DNNs in noisy
conditions is still small. Notably, [18] applies DNNs with dropout on the Aurora
4 dataset with encouraging results. Up to our knowledge, the present paper is
the first to apply Deep Maxout Networks in combination with dropout strategies
in a noisy speech recognition task demonstrating a substantial improvement of
the recognition accuracy over traditional DNN and other traditional techniques.

The remainder of this paper is organized as follows: Section 2 introduces deep
neural networks and their application under a hybrid automatic speech recog-
nition architecture, Section 3 and Section 4 describe the dropout and maxout
methods, respectively. Finally, our results are presented in Section 5 followed by
some conclusions and further lines of research in Section 6.

2 Deep Neural Networks and Hybrid Speech Recognition
Systems

A Deep Neural Network (DNN) is a Multi-Layer Perceptron (MLP) with a larger
number of hidden layers between its inputs and outputs, whose weights are fully
connected and are often initialized using an unsupervised pre-training scheme.



Deep Maxout Networks Applied to Noise-Robust Speech Recognition 111

As a traditional MLP the feed-forward architecture can be computed as fol-
lows:

h(l+1) = σ
(
W(l)h(l) + b(l)

)
, 1 ≤ l ≤ L (1)

where h(l+1) is the vector of inputs to the l+1 layer, σ(x) = (1 + e−x)
−1

is the
sigmoid activation function, L is the total number of hidden layers, h(l) is the
output vector of the hidden layer l and W(l) and b(l) are the weight matrix and
bias vector of layer l, respectively.

Training a DNN using the well-known error back-propagation (BP) algorithm
with a random initialization of its weight matrices may not provide a good per-
formance as it may become stuck in a local minimum. To overcome this prob-
lem, DNN parameters are often initialized using an unsupervised technique as
Restricted Bolzmann Machines (RBMs) [6] or Stacked Denoising Autoencoders
(SDAs) [19]. Nevertheless, as it will be explained later in this paper, pre-training
may not be necessary if some recently proposed anti-overfitting techniques are
used.

2.1 Hybrid Speech Recognition Systems

In a hybrid DNN/HMM system, just as in classical ANN/HMM hybrids [1], a
DNN is trained to classify the input acoustic features into classes corresponding
to the states of HMMs, in such a way that, the state emission likelihoods usually
computed with GMM are replaced by the likelihoods generated by the DNN.

The DNN estimates the posterior probability p(s|ot) of each state s given the
observation ot at time t, through a softmax final layer:

p(s|ot) =
exp

(
W(L)h(L) + b(L)

)
∑

S̄ exp
(
W(L)h(L) + b(L)

) . (2)

In a hybrid ASR system, the HMM topology is set from a previously trained
GMM-HMM, and the DNN training data come from the forced-alignment be-
tween the state-level transcripts and the corresponding speech signals obtained
by using this initial GMM-HMM system.

In the recognition stage, the DNN estimates the emission probability of each
HMM state. To obtain state emission likelihoods p(ot|s), the Bayes rule is used
as follows:

p(ot|s) =
p(s|ot) · p(ot)

p(s)
(3)

where p(s|ot) is the posterior probability estimated by the DNN, p(ot) is a
scaling factor constant for each observation and can be ignored, and p(s) is the
class prior which can be estimated by counting the occurrences of each state on
the training data.

3 Dropout

The most important problem to overcome in DNN training is overfitting. Nor-
mally this problem arises when we try to train a large DNN with a small training
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set. A training method called dropout proposed in [8] tries to reduce overfitting
and improves the generalization capability of the network by randomly omitting
a certain percentage of the hidden units on each training iteration.

When dropout is employed, the activation function of Eq. (1) can be rewritten
as:

h(l+1) = m(l) ⋆ σ
(
W(l)h(l) + b(l)

)
, 1 ≤ l ≤ L (4)

where ⋆ denotes the element-wise product, m(l) is a binary vector of the same
dimension of h(l) whose elements are sampled from a Bernoulli distribution with
probability p. This probability is the so called Hidden Drop Factor (HDF ) and
must be determined over a validation set as it will be seen in Section 5.

As the sigmoid function has the property that σ(0) = 0, Eq. (4) can be
rewritten as:

h(l+1) = σ
(
m(l) ⋆

(
W(l)h(l) + b(l)

))
, 1 ≤ l ≤ L (5)

where dropout is applied on the inputs of the activation function, leading a more
efficient way of perform dropout training.

Note that dropout is only applied in the training stage whereas on testing
all the hidden units become active. Dropout DNN can be seen as an ensemble
of DNNs, given that on each presentation of a training example, a different
sub-model is trained and the sub-models predictions are averaged together. This
technique is similar to bagging [2] where many different models are trained using
different subsets of the training data, but in dropout each model is only trained
in a single iteration and all the models share some parameters.

Dropout networks are trained with the standard stochastic gradient descent
algorithm but using the forward architecture presented on Eq. (4) instead of
Eq. (1). Following [13], we compensate the parameters in testing by scaling the
weight matrices taking into account the dropout factor as follows:

W
(l)

= (1−HDF ) ·W(l) (6)

Dropout has already successfully tested on noise robust ASR in [18]. Its ben-
efits come from the improved generalization abilities attained by reducing their
capacity. Another interpretation of the behaviour of dropout is that in the train-
ing state it adds random noise to the training set resulting in a network that
is very robust to variabilities in the inputs (in our particular case, due to the
addition of noise).

4 Deep Maxout Networks

A Maxout Deep Neural Network (DMN) [5] is a modification of the feed-forward
architecture (Eq. (1)) where the maxout activation function is employed. The
maxout unit simply takes the maximum over a set of inputs. In a DMN each
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hidden unit takes the maximum value over the g units of a group. The output
of the hidden node i of the layer l + 1 can be computed as follows:

h(l+1)
i = max

j∈1,...,g
z(l+1)
ij , 1 ≤ l ≤ L (7)

where z(l+1)
ij are the lineal pre-activation values from the l layer:

z(l+1) = W(l)h(l) + b(l) (8)

As can be observed the max-pooling operation is applied over the z(l+1) vector.
Note that DMNs fairly reduce the number of parameters over DNNs, as the
weight matrix W(l) of each layer in the DMN is 1/g of the size of its equivalent
DNN weight matrix. This makes DMN more convenient for ASR tasks where the
training sets and the input and output dimensions are normally very large. An
illustration of a DMN with 2 hidden layers and a group size of g = 3 is shown
in Figure 1.

Fig. 1. A Maxout Network of 2 hidden layers and a group size of g = 3. The hidden
nodes in red perform the max operation.

In [5] a demonstration of the capability of maxout units to approximate any
convex function by tuning the weights of the previous layers is included. For this
matter, the shapes of activation functions are not fixed allowing the DMNs to
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model the variability of speech more smoothly. DMNs are commonly applied in
conjunction with dropout maximizing the model averaging effects of dropout.

5 Experiments

In this section, we present the experiments carried out for evaluating and compar-
ing the performance of conventional GMM-HMM and the different hybrid deep
neural networks-based ASR systems (basic DNN, dropout DNN and DMN). The
experiments were performed on the TIMIT corpus [4]; in particular, we used the
462 speaker training set, a development set of 50 speakers to tune all the pa-
rameters and finally the 24 speakers core test set. Each utterance is recorded at
16 kHz and the corpus includes time-aligned phonetic transcriptions allowing as
to give results in terms of Phone Error Rate (PER).

To test the robustness of the different methods we digitally added to the
clean speech four different types of noises (white, street, music and speaker) at
four different SNRs using the FANT tool [9] (with G.712 filtering). These noises
are the same ones used in [10]. All the noise tests are evaluated in a mismatch
condition (i. e. training in clean conditions and testing on noisy speech).

On the technical side we employed the Kaldi toolkit [17] for implementing the
traditional GMM-HMM ASR system and the PDNN toolkit [12] for the hybrid
DNN-based ASR systems.

In all of the cases, the input features were 12th-order MFCCs plus a log-energy
coefficient, and their corresponding first and second order derivatives yielding a
39 component feature vector. Mean and variance normalization on each of the
components were applied. For the hybrid models, a context of 5 frames was
chosen. All the hybrid systems were trained with the labels generated from the
best performance GMM-HMM system through forced alignment.

(a) HDF (b) Group size: g

Fig. 2. Results in terms of PER [%] as a function of HDF for DNN and DMN (Figure
2a) and the group size for DMN (Figure 2b) on TIMIT development set. Both nets
have 5 layers.
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First, we tuned the configuration parameters of the networks (number of hid-
den layers, HDF and group size, when applicable) under clean conditions. HDF
and group size were validated on the development set as can be seen on Figure
2 considering 5 hidden layer networks, yielding an optimal dropout factor of 0.1
for dropout DNNs, 0.2 for DMNs and a group size of g = 3. These values of
HDR and group size were used throughout the rest of the experiments. DMNs
are always employed in conjunction with dropout.

Figure 3 shows the PERs as a function of the number of hidden layers for
the development and test sets for different types of hybrid DNN-based ASR sys-
tems: randomly initialized, with a pre-training stage, with dropout and maxout
networks. The number of hidden nodes in all of the DNNs is 1024. To be fair,
we chose 400 hidden maxout units for the DMN since 400 × 3 = 1200 yields a
number of parameters in the same order as the DNNs. An exploration of the
learning rates for the networks without dropout the learning rate started at 0.08
for 30 epochs and was subsequently divided in half while the validation error de-
creased. For the dropout and DMNs networks we started with a higher learning
rate of 0.1. As can be seen in Figure 3 the DMNs outperform clearly the other
networks for all the number of layers considered. Best results are obtained in the
development set with DMNs of 5 layers.

(a) Development Set (b) Test Set

Fig. 3. Comparison of the performance of the different hybrid DNN-based ASR sys-
tems in terms of PER [%] as a function of the number of hidden layers for TIMIT
development and test sets

Second, we compared the baseline system (GMM-HMM) with the best con-
figuration of the different hybrid ASR systems under clean conditions: Mono-
phone, Triphone, Triphone with Lineal Discriminant Analysis (LDA), Maximum
Likelihood Lineal Transform (MLLT) and Speaker Adaptative Training (SAT).
Results for the development and test sets are shown in Table 1.

As can be observed, all of the hybrid systems outperform the different versions
of the baseline system, in both development and test sets. DNNs with random
initialization, pretraining and dropout achieve similar results whereas with DMN
the lowest PER is obtained.
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Table 1. Recognition results in terms of PER(%) for the TIMIT development and
core test sets in clean conditions

Method Dev PER % Eval PER %
Monophone 33.33 34.30
Triphone 28.64 30.42
Triphone + LDA + MLLT 26.44 27.62
Triphone + LDA + MLLT + SAT 23.56 25.79
DNN with random initialization (7 layers) 21.50 23.53
DNN with pretraining (8 layers) 21.05 23.05
DNN with dropout (4 layers) 21.98 23.84
DMN (5 layers) 19.15 21.01

Table 2. Average fine-tuning epoch execution time for a 5 hidden layers networks,
1024 nodes for DNN, 400 nodes and g = 3 for DMN

Method Time(min)
DNN 57.81
DNN with dropout 59.07
DMN 24.10

Third, we tested the different systems in noisy conditions. Results achieved
by the Monophone baseline, the best Triphone baseline (LDA+MLLT+SAT)
and the best configurations for the hybrid DNN with pre-training, DNN with
dropout, and DMN-based ASR systems in the noisy contaminated version of
the TIMIT core test set are shown in Figure 4 for the different types of noises
and four different SNRs. As can be seen, DMN performs better in almost every
situation for white, street and speaker noises in comparison to the other systems.
It is specially remarkable the performance of DMN in white and speaker noises.
For street noise, results obtained with DMN are very similar to those achieved
by the triphone GMM-HMM systems and both DNNs at high and medium SNRs
whereas it obtains the lowest PER at low SNRs. For music noise, the results of
all of the systems are very similar. As expected dropout performs better than
DNN with pre-training at low SNR in all the noises, given that dropout is very
robust to the variations of the input.

Fourth, we compared the fine-tunning stage time requirements for the DNNs,
DNNs with dropout and DMN. We computed the average epoch time over all
the iterations for 5 hidden layers networks with 1024 nodes per layer for the
DNNs and 400 maxout units per layer and group size g = 3 for the DMN. The
resulting times are shown in Table 2. As can be observed the DMN reduce the
average epoch time over a half compared with DNNs with and without dropout.
making them appealing for ASR tasks where the training set are normally very
large.
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(a) White noise (b) Street Noise

(c) Music noise (d) Speaker Noise

Fig. 4. Comparison of the performance of the different systems in terms of PER [%]
for TIMIT test set in different noisy conditions

6 Conclusions and Future Work

In this paper Deep Maxout Networks (DMNs) are employed for robust speech
recognition using hybrid architecture showing a better performance over stan-
dard DNNs. This is due to the DMNs flexibility of the activation functions
allowing a better modeling of speech variability. Further lines of research include
testing the DMN in a more complete datasets. Other novel machine learning
techniques like dropconnect [20] are also interesting candidates not yet been
tested in ASR tasks.
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