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Abstract
In this paper we present advances in the modeling of the mask-
ing behavior of the Human Auditory System to enhance the ro-
bustness of the feature extraction stage in Automatic Speech
Recognition. The solution adopted is based on a non-linear fil-
tering of a spectro-temporal representation applied simultane-
ously on both the frequency and time domains, by processing
it using mathematical morphology operations as if it were an
image. A particularly important component of this architecture
is the so called structuring element: biologically-based consid-
erations are addressed in the present contribution to design an
element that closely resembles the masking phenomena taking
place in the cochlea. The second feature of this contribution is
the choice of underlying spectro-temporal representation. The
best results were achieved by the representation introduced as
part of the Power Normalized Cepstral Coefficients together
with a spectral subtraction step. On the Aurora 2 noisy con-
tinuous digits task, we report relative error reductions of 18.7%
compared to PNCC and 39.5% compared to MFCC.
Index Terms: Spectro-temporal processing, Morphological fil-
tering, Automatic speech recognition, Auditory-based features,
PNCC.

1. Introduction
Machine performance in Automatic Speech Recognition (ASR)
tasks is still far away from that of humans, and noisy condi-
tions only compound the problem. Like other researchers, we
hypothesize that modeling the Human Auditory System (HAS)
may be an adequate strategy to reduce the gap in performance.

It is well established that feature extraction methods for
ASR need to take into account some properties of the HAS
to a certain extent. For example, the Mel-Frequency Cepstral
Coefficients (MFCC) [1] or the Gammatone-based Coefficients
(GTC) [2], result from non-linear transformations of the fre-
quency domain, and they model a filterbank that mimics the ex-
istence of critical bands in the cochlea. Some other aspects, like
the non-linear perception of sound intensity, are also present as
part of these procedures. In this paper we concentrate on the
modeling of the masking phenomena in the cochlea.

Other methods based on a better modeling of HAS
properties—in particular the masking effect—can be found in
the literature: in [3] a masking threshold as a function of fre-
quency is computed, [4] employes several psycho-acoustical
properties of human perception to define a perceptual speech
excitation function and performs Spectral Subtraction (SS) [5]

in the masked region, while [6] performs an estimation of the
clean signal taking into account the simultaneous masking ef-
fect. On the other hand, detailed physiological models—like the
one proposed in [7] based on the auditory-nerve activity–have
been used in ASR [8] effectively, but the high computational
cost motivated the development of simplified models that cap-
ture the essentials of auditory processing, as the one we propose
next.

In this work we refine our hypothesis that morphological
filtering produces a smoothing of the spectro-temporal enve-
lope that better models the masking behavior of the cochlea.
Our model filters a spectro-temporal representation of speech—
sometimes referred to as cochleogram—as if it were an im-
age, allowing for the simultaneous processing of both dimen-
sions, time and frequency. The filtering procedure we pro-
pose is based on mathematical morphology operations, and it
aims to reproduce the masking properties of the HAS. For that
purpose, the mask—or in mathematical morphology terminol-
ogy the structuring element (SE)—employed reproduces the
spectro-temporal masking behavior from well-known empirical
measurements in the spectral and temporal domains indepen-
dently. Despite ingrained intuitions that masking deteriorates
signal quality, we propound that it smoothes away some noise
and artifacts. In [9, 10] we presented evidence of this using
morphological filtering of speech spectrograms with a roughly-
approximated SE. Such rough modeling already yielded an en-
hancement of the filtered speech both in terms of objective qual-
ity measures and ASR performance. Note that, although some
work has been carried out in the field of morphological process-
ing of speech spectrograms using dilation across spectral lines
to reduce spectral fluctuations [11], such efforts did not take into
account the HAS properties.

It seems that the design of the SE is the crux of our ap-
proach. For simplicity’s sake, we employ a single mask across
all frequencies and intensities despite the fact that the masking
properties are frequency- and sound intensity-dependent [12],
relying on the underlying spectro-temporal representation to ac-
commodate these effects. The proper choice of this represen-
tation is the second leg of our feature extraction method. We
have selected the one recently proposed in [13, 14] as part of
the Power-Normalized Cepstral Coefficients (PNCC) in combi-
nation with conventional spectral subtraction.

PNCC includes the use of a power-law non-linearity that
replaces the traditional logarithmic non-linearity used in MFCC
coefficients, a noise-suppression algorithm based on asymmet-
ric filtering that suppresses background excitation, and a mod-
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ule that carries out temporal masking by placing a peak for each
frequency channel and suppressing the instantaneous power if it
falls below the envelope. In our work we borrow the underlying
spectro-temporal representation proposed by PNCC but intro-
duce our own temporal masking procedure that goes a step be-
yond that in PNCC, while still maintaining a low computational
complexity.

Other solutions that simultaneously perform temporal and
spectral analysis to yield spectro-temporal features have lately
emerged, e.g. spectro-temporal Gabor features [15, 16, 17],
HIST [18], spectro-temporal derivative features [19] or sparse
spectro-temporal features [20]. Auditory-inspired representa-
tions in these domains are reviewed in [21]. Unlike [15, 16, 17],
where a reduced set of temporal, spectral and spectro-temporal
filters need to be chosen, in our approach a single SE is used
across the board.

Finally, noise robustness techniques are pervasive in ASR,
some of them based on the (partial) suppression of background
noise from the speech signal in a preprocessing stage. Most of
these methods operate on the frequency-domain—like the al-
ready mentioned spectral subtraction, Wiener filtering [22] or
the minimum mean-square error short-time spectral amplitude
estimator [23]—and attempt to enhance the speech signal with-
out extensively modeling the HAS properties.

The remainder of this paper is organized as follows: Section
2 introduces the basic terminology of mathematical morphology
needed for the rest of the paper; Section 3 describes the theoret-
ical basis for the psycho-acoustical modeling of the SE. Section
4 briefly describes the spectro-temporal representation underly-
ing our procedure. Finally, our results are presented in Section
5 followed by some conclusions and further lines of research in
Section 6.

2. An overview of morphological processing
Mathematical Morphology is a theory for the analysis of spatial
structures [24] whose main application domain is in Image Pro-
cessing as a tool for thinning, pruning, structure enhancement,
object marking, segmentation and noise filtering [25]. It may be
used on both binary and grey-scale images.

To perform Morphological Filtering (MF) operations, we
first convolve the image with a SE and then select the out-
put value depending on the thresholded result of the convolu-
tion. In this paper, we apply MF on cochleograms, our underly-
ing spectro-temporal representation, that will be processed as if
they were images. This spectro-temporal representation is ex-
plained on Section 4.

With the proper choice of SE, morphological operations
on the cochleogram reproduce the phenomenon of auditory
masking where the most prominent or salient elements of the
cochleogram mask their surroundings in both the temporal and
frequency domain.

Erosion and dilation are the basic morphological opera-
tions. Erosion is used to reduce objects, while dilation produces
enlargement and fill in small holes. Let S be the underlying
spectro-temporal representation andM the structuring element,
erosion is defined as: S 	M and dilation: S ⊕M .

There are two possible operators generated by the combina-
tion of erosion and dilation using the same structuring element
for both operations: opening (S ◦M ) and closing (S •M ). The
first one is an erosion followed by a dilation and the second, a
dilation followed by an erosion. Mathematically it can be ex-

(a) Simultaneous masking (b) Temporal masking

Figure 1: Comparison between the piecewise-linear model and
the proposed piecewise-convex model in both frequency (left)
and time (right) scales.

pressed as:

S ◦M = (S 	M) ⊕M ; S •M = (S ⊕M) 	M (1)

The opening operator tends to remove the outer tiny leaks
and round shapes, whereas the closing operator preserves the re-
gions that have a similar shape as the structuring element. Previ-
ous experiments [9] show that closing performs better for ASR
than opening.

For producing the final filtered cochleogram S′, first the
closing operator is applied on the original (possibly de-noised)
spectro-temporal representation S using the structuring element
M and the result is subsequently added on S.

S′ = S + S •M (2)

From this enhanced cochleogram S′, the cepstral coeffi-
cients are computed following the procedure explained in Sec-
tion 4.

3. Modeling Cochlear Masking
In this section we present a novel auditorily-motivated SE that
tries to emulate the complex phenomenon of cochlear masking.

The cochlea is the organ that converts the mechanical vi-
brations in the middle ear to neural impulses. The basilar
membrane—the sensing structure that runs the length of the
cochlea–has a particular frequency and time response [26].

Cochlear masking is the phenomenon whereby the percep-
tion of some frequency at a particular time instant, the masked
frequency is affected by the sound level of another, the masker
frequency—possibly at a different time instant—to the extent
that masked frequencies may disappear from perception. The
effect of a masker on simultaneously masked frequencies is
called simultaneous masking. The phenomenon whereby a
masker affects non-simultaneous frequencies is called temporal
masking.

Classical masking experiments concentrated in determining
the amount of masking in either of these directions—frequency
or time—in isolation. Such experiments, for instance, noticed
that simultaneous masking is better represented in logarithmic
scales where the spacing and the masker frequency slopes ex-
tend more regularly to either side of the spectrum [27]. But it
is important to notice that a given (masked) frequency is always
being masked by maskers at different time instants—both from
earlier and later maskers—and frequencies—both from lower
and greater frequency maskers.

The basic piecewise-linear model for simultaneous mask-
ing can be observed in Figure 1.(a) (continuous blue line). It
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Figure 2: Visualizations of the structuring element.

consists of a piecewise linear masker threshold, with slopes of
+30 dB per band for lower band masking and −8 dB per band
for higher band masking.

Using masking tones s(F, t) = Lmδ(F − Fm, t − Tm)
where F is in a transformed frequency scale, Lm is the sound
pressure level of the tone, Fm and Tm are the masker fre-
quency and time instant, the slopes were fitted for Lm =
60 dB (see Figure 6.14 of [12]). We assume a constant Lm

across all frequencies and intensities, relying on the underlying
spectro-temporal representation to accommodate the frequency-
intensity dependency of the masking properties.

Temporal masking has methodologically been treated as
two separate processes: premasking occurs before the appear-
ance of the masker while postmasking manifests itself after the
masker is no longer present. It is well agreed-upon that pre-
masking is noticeable about 20ms prior to the masker, while the
duration of postmasking extends well beyond 200 ms, perhaps
as far as 500 ms [9].

Premasking is usually modeled as a constant slope of
+25 dB/ms, starting 20 ms before the masker, and postmask-
ing with a fitted model for single masker-induced postmasking
which was presented in [28],

M (t− Tm, Lm) = a
(
b− log (t− Tm)

)(
Lm − c

)
(3)

where M is the amount of masking, t is measured in ms, Lm

is the masker level in dB SPL, and a, b and c are parameters
obtained by fitting the curve to the data. Previous premasking
and postmasking models can be observed in Figure 1.(b) (con-
tinuous blue line).

After such models a masking SE for a single frequency-
time point should be quite sharp. But findings point to a smooth
model around (Fm, Tm), with sublinear decays close to this
point and superlinear decays further away [12]. To explain
this, we hypothesize that at the level of granularity at which
the cochleogram is being observed the masking response of a
particular (Fm, Tm) must be the aggregation of many single-
point responses. Thus, we propose a piecewise-convex model
built by aggregating 4 paraboloid quadrants of different param-
eters fitted to the contour provided by the explained time and
simultaneous masking models.

The shape of the proposed SE can be seen in Figure 2. No-
tice the difference in the frequency slopes: this is consistent
with previous work concentrating in higher frequencies and was
used in [9]. A comparison with the piecewise-linear model can
be observed in Figure 1 (dashed green line).

Different sizes in both frequency and time scale were tested,
and the best performance was obtained by taking 10 ms of pre-
masking, 150 ms of postmasking, and 6 bands in frequency. In
all cases, the frequency resolution of each band was 4 pix-
els. Temporal and simultaneous masking were interpolated over
these boundaries and a normalization between zero and one

(a) Noisy Spectrogram S compared with the SE (upper left) .

(b) Spectrogram after morphological filtering, S •M .

(c) Final cochleogram S′ .

Figure 3: Choice spectrograms output by each step of the archi-
tecture.

was applied. Finally, the SE was padded with zeros around the
pixel in which the morphological closing operation is to be per-
formed. The SE finally chosen can be seen at the upper left of
Figure 3(a) along with examples of the output of some of the
processing steps leading to the final cochleogram.

4. Spectro-temporal representation
In this section we explain our choice of the auditorily-motivated
frequency scaled spectrograms or cochleograms used in the pro-
posed front-end.

The underlying spectro-temporal representation is the do-
main where the previously explained MF filtering is applied.
In this paper, we have chosen the power-normalized spectro-
temporal representation used in the PNCC feature extraction
process: ERB scale [29, 30] and a gammatone-shaped filters
bank analysis, given that the impulse response of the gamma-
tone function provides an excellent fit to the human auditory fil-
ter shapes [31] allowing a better modeling of the masking. For
comparison purposes, results employing cochleograms based
on the conventional mel [32] frequency scale and triangular fil-
ter bank are also presented.

The power-normalized cochleogram computation is per-
formed as follows: the speech signal is analysed using a frame
length of 25ms and a frame shift of 10ms. After preempha-
sis and Hamming windowing an auditory filter bank analysis
is applied over the spectrogram computed by using the Short-
Time Fourier Transform (STFT). In particular, a bank of 40
gammatone-shaped filters whose center frequencies are lin-
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Figure 4: Structure of the porposed front-end algorithm; shaded blocks, spectral subtraction (SS) and Morphological Filtering (MF),
indicates the major differences regarding the PNCC algorithm.

Figure 5: Recognition results in terms of WER[%] and 95%
confidence intervals.

early spaced in the ERB scale between 200Hz and 4000Hz is
applied, followed by the PNCC [13] medium-duration power
bias subtraction and power function nonlinearity, to obtain the
cochleogram S.

The masked cochleogram S′ is obtained by performing a
morphological filtering using the SE described in Section 3.
Then to decorrelate the resulting filter-bank energies a Discrete
Cosine Transform (DCT) is applied, followed by a mean vari-
ance normalization, to yield a modified version of the PNCC
coefficients. In some of our experimental validations we add a
spectral subtraction step after the STFT to show that the pro-
posed algorithm can be combined with other noise suppression
schemes. A diagram of whole process is shown in Figure 4.

5. Experimental Results
We used the AURORA 2 dataset [33], to test our model. It con-
sists of connected digits spoken by American English speakers
and recorded at a sample rate of 8 KHz. The database was con-
taminated with a selection of 8 different real-world noises at dif-
ferent SNRs. The experiments were performed using the HTK
reference back-end described in [33], where a standard GMM-
HMM system with a 16-state word-based HMM and a 5-state
silence model was adopted.

Cepstral coefficients C0 to C12 obtained by the proposed
front-end were retained together with their corresponding delta
(∆) and acceleration (∆∆) coefficients to yield feature vectors
of 39 components. Mean and variance normalization were ap-
plied on each of the components. The system was tested in
mismatched conditions (sets A, B and C).

Recognition results in terms of Word Error Rate (WER) and
their 95% confidence intervals are shown in Figure 5. These
results correspond to several experiments carried out to study
the impact of MF with the SE described in Section 3 applied in
isolation or in combination with SS and employing MFCC- or
PNCC-based spectral representations (labeled respectively, as
MFCC and PNCC).

First, the influence of MF in the ASR system performance
is analyzed. As can be observed, the application of MF over the
noisy spectrograms produces relative error reductions of 16.5%
for MFCC and 9.7% for PNCC with respect to the correspond-

ing baselines, both statistically significant. This result suggests
that the proposed model is suitable for representing the behavior
of the HAS.

Second, the combination of SS and MF was also investi-
gated. As expected, for both spectro-temporal representations,
SS alone (without MF) clearly outperforms the corresponding
baselines. For both, MFCC and PNCC, the joint use of SS and
MF improves the recognition rates obtained with SS in a statis-
tically significant manner. In particular, for MFCC the relative
error reduction achieved by MF+SS with respect to SS is 10.7%
and 24.9% with respect to the baseline. The relative error reduc-
tion obtained with PNCC is 6.2% and 18.7% related to SS and
the baseline, respectively. These results show that a positive
synergy exists between the SS and MF techniques.

Third, the comparison of both spectro-temporal represen-
tations shows that the different versions of features based on
PNCC (baseline, SS, MF, SS+MF) achieve in all cases bet-
ter recognition rates than the corresponding features based on
MFCC. The best combination of PNCC (MF+SS) produces a
relative error reduction of 19.4% with respect to the best com-
bination of MFCC (MF+SS) and of 39.5% with respect to the
MFCC baseline.

To conclude, a better relative error reduction in the AU-
RORA 2 database was achieved than other state-of-the-art tech-
niques. In comparison, for instance, 2D-Gabor features based
on power-normalized spectrograms achieve a relative error re-
duction of only 7.04% with respect to PNCC using a HMM
back-end [16].

6. Conclusions and further work
An enhanced biologically-motivated SE that takes into account
the HAS masking properties is presented in this paper. Well-
known empirical results in both temporal and frequency do-
mains were interpolated to produce a three-dimensional SE. A
smoothness restriction was imposed since this is more suited
for our hypothesis that the morphological filtering produces a
convexification of the spectro-temporal envelope of speech that
resembles the masking properties of the HAS. The applica-
tion of morphological processing in conjunction with the PNCC
spectro-temporal representation produces a significant increase
in recognition rates in the Aurora 2 dataset. Besides the com-
bination of PNCC, spectral subtraction and morphological pro-
cessing is investigated. Future work will focus on the intro-
duction of the dependency of the masker strength into the mor-
phological procedure and the application to alternative ASR ar-
chitectures like hybrid and tandem approaches, that has already
produced improvements with other spectro-temporal feature ex-
traction methods.
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logical processing of spectrograms for speech enhancement,” Lec-
ture Notes in Computer Science, pp. 224–231, 2011.

[11] J. Hansen, “Morphological constrained feature enhancement with
adaptive cepstral compensation (MCE-ACC) for speech recogni-
tion in noise and Lombard effect,” Speech and Audio Processing,
IEEE Transactions on, vol. 2, no. 4, pp. 598–614, 1994.

[12] H. Fastl and E. Zwicker, Psycho-acoustics: Facts and Models,
3rd ed. Springer, 2007.

[13] C. Kim and R. Stern, “Power-normalized cepstral coefficients
(PNCC) for robust speech recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Confer-
ence on, March 2012, pp. 4101–4104.

[14] C. Kim and R. M. Stern, “Power-normalized cepstral coefficients
(PNCC) for robust speech recognition,” IEEE Transactions on Au-
dio, Speech, and Language Processing.

[15] B. T. Meyer and B. Kollmeier, “Robustness of spectro-temporal
features against intrinsic and extrinsic variations in automatic
speech recognition,” Speech Commun., vol. 53, no. 5, pp. 753–
767, 2011.

[16] B. T. Meyer, C. Spille, B. Kollmeier, and N. Morgan, “Hooking up
spectro-temporal filters with auditory-inspired representations for
robust automatic speech recognition,” in INTERSPEECH, 2012.

[17] B. T. Meyer, S. V. Ravuri, M. R. Schdler, and N. Morgan, “Com-
paring different flavors of spectro-temporal features for ASR,” in
INTERSPEECH. ISCA, 2011, pp. 1269–1272.

[18] M. Heckmann, X. Domont, F. Joublin, and C. Goerick, “A hierar-
chical framework for spectro-temporal feature extraction,” Speech
Communication, vol. 53, no. 5, pp. 736 – 752, 2011.

[19] A. Hurmalainen and T. Virtanen, “Modelling spectro-temporal
dynamics in factorisation-based noise-robust automatic speech
recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, 2012, pp.
4113–4116.

[20] C. Martı́nez, J. Goddard, D. Milone, and H. Rufiner, “Bioinspired
sparse spectro-temporal representation of speech for robust classi-
fication,” Computer Speech and Language, vol. 26, no. 5, pp. 336
– 348, 2012.

[21] R. Stern and N. Morgan, “Hearing is believing: Biologically in-
spired methods for robust automatic speech recognition,” Signal
Processing Magazine, IEEE, vol. 29, no. 6, pp. 34–43, 2012.

[22] P. Scalart and J. Filho, “Speech enhancement based on a priori
signal to noise estimation,” in Acoustics, Speech, and Signal Pro-
cessing (ICASSP’96), IEEE International Conference on, vol. 2,
1996, pp. 629–632.

[23] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude esti-
mator,” Acoustics, Speech and Signal Processing, IEEE Transac-
tions on, vol. 32, no. 6, pp. 1109–1121, 1984.

[24] G. Matheron and J. Serra, “The birth of mathematical morphol-
ogy,” in Proc. 6th Int. Symp. Mathematical Morphology. Sydney,
Australia, 2002, pp. 1–16.

[25] E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Im-
age Processing, ser. Tutorial Texts in Optical Engineering. SPIE
press, 2003.
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