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ABSTRACT

In this paper we propose a system for automatic detection of spe-
cific events and abnormal behaviors in crowded scenes. In particu-
lar, we focus on the parametrization by proposing a set of mid-level
spatio-temporal features that successfully model the characteristic
motion of typical events in crowd behaviors. Furthermore, due to
the fact that some features are more suitable than others to model
specific events of interest, we also present an automatic process for
feature selection. Our experiments prove that the suggested feature
set works successfully for both explicit event detection and distance-
based anomaly detection tasks. The results on PETS for explicit
event detection are generally better than those previously reported.
Regarding anomaly detection, the proposed method performance is
comparable to those of state-of-the-art method for PETS and sub-
stantially better than that reported for Web dataset.

Index Terms— Machine Vision, Video processing , Video
surveillance, Crowded environments, Clutter environment, Motion
analysis

1. INTRODUCTION

Crowd behavior in public areas is currently of great interest to the
computer vision community. More and more scenarios involving
crowds have to be monitored, such as airports, transport stations,
or public events. However, the current video surveillance systems
still lack of the desired level of automation, requiring operators who
monitor a high number of cameras. For this reason, there is an in-
creasing demand of systems that are capable of either automatically
triggering alarms in case of an abnormal situation, or directly identi-
fying explicit events of interest in the surveillance video. The system
proposed in this paper aims to detect abnormal behaviors, such as
crowd formations or evacuations, allowing the operator to pay more
attention to these potentially risky events.

Detection of unusual events in video surveillance has been tra-
ditionally addressed following one of these two approaches: a) ex-
plicit event detection [1]; and b) anomaly detection [2]. The for-
mer considers the problem of modeling a set of predefined events
of interest in video surveillance so that they may later be detected
in real-time operation. This particular approach for event detection
in video surveillance has been promoted by various international
challenges, such as TRECVID [3] or PETS [4]. When applied to
crowded scenarios (e.g. PETS) these events describe actions such
as people walking or running, evacuation, crowd formation, crowd
splitting, crowd dispersion, etc.

However, considering a predefined set of events of interest is
sometimes inadequate due to the large amount of potential activity
patterns of the crowds. In these cases, therefore, a generic detection

of anomalies seems to be more appealing. Since these systems sim-
ply consider anomalies or unusual events as those that substantially
differ from what is considered usual activity, they rely on model-
ing the usual activities, for which a large amount of training data is
available.

Regardless of the selected approach (explicit event or anomaly
detection), a typical system for activity recognition in video surveil-
lance (e.g. [5], [6]) usually include some of the following processing
steps: (1) Background subtraction: areas belonging to objects of in-
terest (pedestrians or crowds) are detected and segmented in each
frame in order to reduce computations and improve the precision of
the subsequent analysis; (2) Object tracking and motion estimation:
objects are tracked along the following frames in order to extract
motion information; (3) Feature extraction: a set of features is ex-
tracted from the tracked objects; and (4) Event/anomaly detection,
a supervised or unsupervised system makes decisions based on the
previously computed features.

This paper mainly focuses on the feature extraction step. Specif-
ically, a novel set of mid-level features is presented that models sev-
eral aspects of crowd behavior. The proposed set was applied to
both explicit event detection and anomaly detection tasks. Further-
more, concerning the explicit event detection scenario, some features
are more informative than others for each particular event being de-
tected. Even more, there would be features that, whereas become of
great importance to detect a specific event, become noise when de-
tecting other. In consequence, this paper also presents a systematic
procedure which, given an initial feature pool and a set of explicit
events to be detected, automatically selects the most suitable subset
of features for each particular event.

The remainder of this paper is organized as follows: Section 2
provides an overview of the state of the art; Section 3 describes the
proposed system in detail; Section 4 assesses our proposal in several
scenarios and databases. Finally Section 5 draws conclusions and
introduces potential future lines of research.

2. RELATED WORK

In this section we briefly review the literature on feature extrac-
tion for event recognition in crowds-related video surveillance. Nu-
merous specific approaches have been developed to detect events
in crowds. In all of them some selected spatio-temporal features
become the basis for the detection process. However, the features
themselves should not be considered separately since other elements
of the processing pipeline are designed in accordance with them in
order to achieve competitive results.

Concerning explicit event detection tasks, the work in [7] pre-
sented a system based on holistic (global) spatial features such as
the area and the perimeter of the foreground objects, the number of
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Fig. 1. Flowchart of the processing pipeline of our proposal.

edge pixels, and various texture features, such as homogeneity or en-
tropy. In [8], a simple representation of the crowd motion was built
based upon histograms of motion direction alongside an indication
of motion speed. A more elaborated approach can be found in [1],
where the authors described a method that first computed the opti-
cal flow between frames, and then considered histograms of motion
magnitude and orientation in multiple coordinate systems. Similarly,
the work in [5] built up models for crowd event recognition using
features such as the mean velocity, as well as other attributes of the
motion direction and the spatial density of the crowd.

Regarding anomaly detection tasks, several features can be
found in the literature: the work in [2] proposed to localize ab-
normal events using a social force model. This model relied on a
grid of particles that is placed over the image and advected with
the averaged optical flow. A force flow is estimated for every pixel
in every frame and randomly selected spatio-temporal volumes of
force flow are used to model the normal behavior of the crowd. In
[9] a feature set is proposed that is based on data properties in the
Fourier domain. Finally, in [10] the authors proposed to work on
block-clips representing non-overlapping spatio-temporal patches,
and compute their flow field by means of a 2D-mixture of Gaussian.

Although the literature usually proposes specific solutions for
explicit event or anomaly detection, we claim that both of them can
be successfully approached using detection systems that rely on the
same problem parametrization. Hence, our objective is to demon-
strate how the same set of features can yield good performance in
both scenarios.

3. PROPOSED METHOD

The pipeline of the proposed system, shown in Figure 1, is as fol-
lows: first, objects of interest in each frame are detected and masks
associated with the foreground areas are computed. Next, a set of
salient points is extracted from foreground areas, and then these
points are tracked with respect to the previous frame, thus obtain-
ing their motion vectors. Subsequently, a set of mid-level features
is computed in the foreground areas. Finally, a detector determines
when an event of interest occurs. As already mentioned, although
each step is explained below, our work focuses on the feature extrac-
tion process, which will be described more in-depth.

Foreground areas that correspond to the objects of interest are
computed using a background subtraction algorithm that fuses the
results from two methods: a) background models that are specifically
learnt for each surveillance camera; and b) temporal updating mod-
els. The background models are generated from frames recorded in
absence of people in the scene, and thus provide very precise ap-
proximations of the background. In particular, and following ap-
proaches found in the literature such as [11], an appearance model
for each pixel in the image is built by fitting a Mixture of Gaussians
(MoG) model, so that various illumination conditions or even non-

static backgrounds can be handled. In the test phase, the likelihood
of each pixel is computed and compared with a threshold to make a
decision.

This model, however, presents two main drawbacks: first, in
some cases there are not available recordings of the empty scene
to learn the backgrounds; and second, some illumination changes
(mainly due to varying shadows with the time of the day) are not
correctly modeled. To overcome these issues, we propose the use
of a temporal updating model, which is computed by subtracting the
current frame from a reference one obtained as a running average of
the previous frames. This second model generates a rough approxi-
mation of the foreground areas (using morphological dilations) that,
when combined with the background model (using an AND logical
operator), provided a refined version of the initial foreground masks
by removing areas associated with illumination changes.

Once the foreground masks have been computed, salient points
are extracted using FAST [12] just in the regions of interest, what
notably reduces the computational cost of the proposed approach.
Furthermore, only the best N points (80 in our experiments), those
exhibiting the highest corner strengths, are considered for the subse-
quent tracking process. Next, HOG [13] is used to describe the local
area around each detected point, and the Histogram Intersection (HI)
[14] is used for feature comparison. The output of this stage is a set
of pairs (p,u), where p represents a key-point and u its associated
motion vector, from which we build the proposed set of features.

3.1. Proposed features

This section describes our problem parametrization. Based on the
detected objects, salient points and motion vectors, we build a set of
spatio-temporal mid-level features. One of the desirable properties
of the feature set is to be independent of the addressed task or the
event to be detected. In the following paragraphs we describe each
of the features:

1. Spatial Location (SL): each frame is divided using a 8× 6 grid
and the number of salient points in each cell is computed. By di-
viding it by the total number of points in the image, the obtained
normalized histogram allows us to model the spatial location (given
a specific camera) in which an event tends to occur.

2. Average Velocity (AV): for each frame, the average velocity of
the detected objects is computed over a sliding window of 5 (previ-
ous) frames. This feature is specially suitable for detecting simple
translation events, such as people walking or running.

3. Dispersion Change (DC): defining dispersion as the sum of the
distances between the spatial location of each salient point pn(i) and
the average location p̄n in a frame n, this descriptor computes the
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(a) DC > 1
Evacuation

(b) DC = 1
Same direction

(c) DC < 1
Formation

Fig. 2. Distance ratio examples

ratio of the dispersion between two consecutive frames as:

DC(n) =

N∑
i=1

d(pn(i), p̄n)

N∑
i=1

d(pn−1(i), p̄n−1)

(1)

where d(p, q) stands for the euclidean distance between two points.
It is worth noticing that pn−1(i) is computed as pn−1(i) = pn(i)−
un(i), using the motion vectors obtained in the motion estimation
stage. As illustrated in Figure 2 this ratio allows us to discriminate
between several crowd motion patterns.

4. Divergence (Div): Similarly to DC, this feature also focuses on
motion; however, both are completely different in nature. In this
case the motion of salient points is first parametrized using an Affine
Transformation Matrix. In particular, we assume that there exists an
affine matrixA that transforms the locations of points in the previous
frame into their new locations in the current frame: Pn = APn−1,
where Pn is a 3xN matrix that encompasses the N points pn =
{xn, yn, 1} in the frame n, and A can be defined as follows:

A =

ε cos θ −ε sin θ tx
ε sin θ ε cos θ ty

0 0 1

 (2)

The matrix that best fits the previously computed motion field u is
estimated using RANSAC [15], which has shown to be very robust
against any outlier caused by errors in the tracking step. Finally,
the Divergence requires to identify those elements in the matrix that
model a change on the scale. This parameter, widely used for mod-
eling camera motion patterns such as zooms [16], can be mathemat-
ically expressed as:

Div = 2ε cos θ (3)

This feature models events with divergent motions like crowd for-
mations and evacuations.

5. Histogram of Motion Orientations (HMO): A histogram of
motion orientations is computed for each frame based on the pre-
vious calculated motion vector field. In particular, 12 orientations
have been considered in our approach.

3.2. Feature selection using mutual information

As we have already mentioned, in an explicit event detection sce-
nario, some features are more suitable than others depending on
the event being detected. Hence, we have developed an automatic
method for feature selection that optimizes the subset of features

Algorithm 1 Feature selection using mutual information.

1: Start with the empty setX0 and consider an initial mutual infor-
mation value MI0 = 0.

2: for t = 1→ Nf = Number of features do
3: for each feature i not included in the set do
4: Compute MI between the extended set Xt

i = {Xt−1, Xi}
and the ground truth vector: I(Xt

i ;Y ).
5: Compute the increment on the MI as ∆MIi = MIti −

MIt−1.
6: end for
7: if ∆MIi <= 0 for every i then
8: The feature set Xt−1 is selected and the algorithm ends.
9: else

10: Select the feature X∗ that maximizes ∆MIi and add it to
the set Xt = [Xt−1, X∗]

11: end if
12: end for

Feature Walk. Run. Eva. Form. Split. Disp.
SL 3 3 3 3 3 5
AV 3 3 3 3 3 3
DC 5 3 3 3 5 3
Div 5 5 3 3 5 3
HMO 5 5 5 5 3 5

Table 1. Selected features for each event using the mutual informa-
tion method

used to detect each event of interest.1 The method is based on the
measure of the Mutual Information (MI) between the features and a
ground truth vector that describes the occurrence of the events. Ob-
viously, due to the need of ground truth labels, this procedure can
only be used in supervised scenarios.

The mutual information I(X;Y ) between two random variables
X and Y measures the mutual dependence between them; in other
words, it is the amount of uncertainty about Y that is removed by
knowing X: I(X;Y ) = H(X) − H(X|Y ), where H is the en-
tropy of a variable. The mutual information was calculated using
MILCA algorithm [17]. More details about the implemented method
are given in the Algorithm 1.

The selected features for each event of the PETS dataset are
shown in Table 1. As can be observed, the features selected for each
particular event intuitively fit its nature; e.g. on the evacuation event
the feature selection process includes: Average velocity, Spatial Lo-
cation, Dispersion Change, and Divergence. All these features are
related to the nature of the evacuation event, in which people move
quickly from the center to the borders of the scene.

4. EXPERIMENTAL RESULTS

Our proposal has been assessed in two different tasks, explicit event
detection and anomaly detection, using several databases for which
other state of the art techniques have reported results.

4.1. Explicit event detection

The explicit event detection has been evaluated on the PETS 2010
dataset [4], which contains videos representing 6 different crowd

1Source code at: http://www.tsc.uc3m.es/˜fsilos/code/
code.html
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Method Walk. Run. Eva. Form. Split. Disp.
ACC

Proposed 0.98 0.98 0.99 0.98 0.98 0.97
Proposed w/o FS 0.97 0.95 0.96 0.97 0.98 0.95
[1] 0.97 0.98 0.99 0.99 0.98 0.94
[7] 0.87 0.88 0.94 0.68 0.77 0.80

F
Proposed 0.92 0.85 0.86 0.88 0.98 0.78
[8] — 0.75 0.20 0.41 0.59 0.30
[5] 0.83 0.72 0.75 0.34 0.49 0.30

Table 2. Results for explicit event detection in PETS dataset

DB [9] [10] [7] [2] Ours
PETS (ACC) 0.96 0.97 0.81 — 0.96
Web (AUC) — — — 0.89 0.96

Table 3. Results for anomaly detection in PETS and Web datasets

events: walking, running, evacuation, formation, splitting and dis-
persion. Since PETS is a relatively small database, we have followed
a 4-fold cross-validation approach. Thus, the database was divided
into 4 subsets, 3 of them being used to train a SVM with RBF-Kernel
and the remaining one used in test to assess the performance. This
experiment was repeated 4 times, one for each test subset, and the
average results were considered for comparison.

Table 2 shows the results of our proposal in comparison to state-
of-the-art approaches previously reported for this database. In par-
ticular, we have compared two different versions of the proposed
method: with (Proposed) and without feature selection (Proposed-
w/o FS), so that the contribution of the feature selection process can
be evaluated. Two metrics have been used for evaluation: detection
accuracy and F-measure. We computed both to provide appropriate
comparisons to already reported results (which used one or another).
As it can be seen our method performs almost always better than
current state of art techniques. Furthermore, it is worth noting the
improvement achieved by our method for the “Dispersion” event. In
our opinion, this result is due to the proper motion parameterization
performed in the DC and Div features for this type of event.

The direct comparison of the two versions of the proposed ap-
proach allows us to conclude the effectiveness of the feature selec-
tion process described in Section 3.2. Additionally, the feature selec-
tion process allows for reducing the computational cost of the final
system. Finally, some visual examples are shown in Figure 3.

4.2. Anomaly detection

The performance of proposed system in the anomaly detection task
has been tested in two datasets: PETS and Web dataset [2]. In
PETS, we considered any event as an anomaly except for “walk-
ing”. In Web dataset there are 12 sequences of normal scenes, such
as pedestrian walking or running, and 8 scenes of abnormal events,
like crowd fighting, escape panics, and protesters.

The classification approach is different for this task. In partic-
ular, it is assumed that either all or, at least, most of the samples
used for training correspond to normal scene. Therefore, we sub-
stituted the SVM by a Mixture of Gaussians (MoG) that learnt the
distribution of data in normal scenarios. Then, in the test stage, our
system computed the likelihood of the data with respect to the learnt
MoG, and made its decision by comparing it with a threshold (break-
even-point). For training purposes, in PETS we used all the available
“walking” videos, whereas for Web dataset we followed the experi-
mental protocol described in [2].

Walking (0.96) Running (0.99) Running (0.99)
Evacuation (0.96)

Formation (0.96) Splitting (0.98) Dispersion (0.98)
Walking (0.99) Walking (0.98) Walking (0.92)

Fig. 3. Examples of the detection of several events on PETS [4].
The probability of each detected event is indicated below the images;
furthermore, when an event is detected the font color changes to red.

Fig. 4. Examples of anomaly detection results from Web dataset
[2]. Top row contains normal scenes whereas bottom row shows
abnormal scenes

Again, we evaluated our approach using two metrics, accuracy
and area under the curve (AUC), to provide appropriate comparisons.
The results are shown in Table 3. For PETS, our system performed
nearly as well or better than previously described systems ([9], [10]
and [7]). Furthermore, for Web the performance of our method was
well above the state-of-the-art results reported in [2].

In addition to these results, some visual examples of the output
of the anomaly detection system are shown in Figure 4.

Finally, some selected videos demonstrative of the achieved re-
sults have been made available in [18], as well as some illustrative
videos of the intermediate results generated at output of each step of
the processing pipeline.

5. CONCLUSIONS AND FURTHER WORK

In this paper we have presented a method for detection of explicit
events and abnormal behavior in crowded scenes. We have focused
on the design of a set of spatio-temporal mid-level features that al-
low us to successfully model crowd behaviors. Furthermore, we
have suggested an automatic feature selection approach. We have
assessed the proposed feature set for explicit even detection on the
PETS dataset and our results compare favourably to the state-of-the
art. We have also evaluate the feature set for anomaly detection on
two datasets, PETS and Web dataset, obtaining again quite compet-
itive performance. Future work will focus on the classifier and on a
more comprehensive evaluation.
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